Page 244 - IJB-9-5
P. 244

International Journal of Bioprinting                                         Hydrogels for 3D bioprinting



            98.  Zheng X, Zhang X, Wang Y, et al., 2021, Hypoxia-mimicking   110. Nie C, Ma L, Li S, et al., 2019, Recent progresses in graphene
               3D bioglass-nanoclay scaffolds promote endogenous bone   based bio-functional nanostructures for advanced biological
               regeneration. Bioact Mater, 6(10): 3485–3495.      and cellular interfaces. Nano Today, 26: 57–97.
            99.  Ding Y, Liu X, Zhang J, et al., 2022, 3D printing polylactic   https://doi.org/10.1016/j.nantod.2019.03.003
               acid polymer-bioactive glass loaded with bone cement for   111. Jo H, Sim M, Kim S, et al., 2017, Electrically conductive
               bone defect in weight-bearing area. Front Bioeng Biotechnol,   graphene/polyacrylamide  hydrogels produced  by  mild
               10: 947521.
                                                                  chemical reduction for enhanced myoblast growth and
            100. Gao F, Xu Z, Liang Q, et al., 2019, Osteochondral   differentiation. Acta Biomater, 48: 100–109.
               regeneration with 3D-printed biodegradable high-strength   https://doi.org/10.1016/j.actbio.2016.10.035
               supramolecular polymer reinforced-gelatin hydrogel
               scaffolds. Adv Sci (Weinh), 6(15): 1900867.     112. Park J, Choi JH, Kim S, et al., 2019, Micropatterned conductive
                                                                  hydrogels as multifunctional muscle-mimicking biomaterials:
               https://doi.org/10.1002/advs.201900867             Graphene-incorporated hydrogels  directly patterned  with
            101. Aihemaiti P, Jiang H, Aiyiti W, et al., Optimization of   femtosecond laser ablation. Acta Biomater, 97: 141–153.
               3D printing parameters of biodegradable polylactic acid/  https://doi.org/10.1016/j.actbio.2019.07.044
               hydroxyapatite composite bone plates.  Int J Bioprint,
               8(1): 490.                                      113.  Hu Y, Han W, Huang G, et al., 2016, Highly stretchable,
                                                                  mechanically strong, tough, and self-recoverable nanocomposite
            102. Ergul NM, Unal S, Kartal I, et al., 2019, 3D printing   hydrogels by introducing strong ionic coordination interactions.
               of chitosan/ poly(vinyl alcohol) hydrogel containing   Macromol Chem Phys, 217(24): 2717–2725.
               synthesized hydroxyapatite scaffolds for hard-tissue
               engineering. Polymer Testing, 79: 106006.          https://doi.org/10.1002/macp.201600398
               https://doi.org/10.1016/j.polymertesting.2019.106006  114. Li J, Liu  X, Crook J  M, et al., 2022, Development of  3D
                                                                  printable graphene oxide based bio-ink for cell support and
            103. Tomás H, Alves CS, Rodrigues J, 2018, Laponite®: A key   tissue engineering. Front Bioeng Biotechnol, 10: 994776.
               nanoplatform for biomedical applications?  Nanomedicine,
               14(7): 2407–2420.                               115. Cheng Z, Landish B, Chi Z, et al., 2018, 3D printing hydrogel
                                                                  with graphene oxide is functional in cartilage protection by
               https://doi.org/10.1016/j.nano.2017.04.016         influencing the signal pathway of Rank/Rankl/OPG. Mater
            104. Afewerki S, Magalhaes L, Silva A D R, et al., 2019, Bioprinting   Sci Eng C Mater Biol Appl, 82: 244–252.
               a synthetic smectic clay for orthopedic applications.    https://doi.org/10.1016/j.msec.2017.08.069
               Adv Healthc Mater, 8(13): e1900158.
                                                               116. Choe G, Oh S, Seok JM, et al., 2019, Graphene oxide/
               https://doi.org/10.1002/adhm.201900158             alginate composites as novel bioinks for three-dimensional
            105. Cheng Z, Landish B, Chi Z, et al., 2018, 3D printing hydrogel   mesenchymal stem cell printing and bone regeneration
               with graphene oxide is functional in cartilage protection by   applications. Nanoscale, 11(48): 23275–23285.
               influencing the signal pathway of Rank/Rankl/OPG. Mater   https://doi.org/10.1039/c9nr07643c
               Sci Eng C Mater Biol Appl, 82: 244–252.
                                                               117. Huang  CT,  Kumar  Shrestha  L,  Ariga  K, et al.,  2017,  A
            106.  Li L, Qin S, Peng J, et al., 2020, Engineering gelatin-based   graphene-polyurethane composite hydrogel as a potential
               alginate/carbon nanotubes blend bioink for direct 3D printing   bioink for 3D bioprinting and differentiation of neural stem
               of vessel constructs. Int J Biol Macromol, 145: 262–271.  cells. J Mater Chem B, 5(44): 8854–8864.
            107. Dasari Shareena TP, Mcshan D, Dasmahapatra AK, et   https://doi.org/10.1039/c7tb01594a
               al., 2018, A review on graphene-based nanomaterials in
               biomedical applications and risks in environment and   118. Lee SJ, Zhu W, Nowicki M, et al., 2018, 3D printing nano
               health. Nanomicro Lett, 10(3): 53.                 conductive multi-walled carbon nanotube scaffolds for
                                                                  nerve regeneration. J Neural Eng, 15(1): 016018.
               https://doi.org/10.1007/s40820-018-0206-4
                                                                  https://doi.org/10.1088/1741-2552/aa95a5
            108. Shin SR, Li YC, Jang HL, et al., 2016, Graphene-based   119. Sanjuan-Alberte P, Whitehead C, Jones J N, et al., 2022,
               materials for tissue engineering. Adv Drug Deliv Rev, 105(Pt   Printing biohybrid materials for bioelectronic cardio-3D-
               B): 255–274.
                                                                  cellular constructs. iScience, 25(7): 104552.
               https://doi.org/10.1016/j.addr.2016.03.007      120. Li L, Qin S, Peng J, et al., 2020, Engineering gelatin-based
            109. Syama S, Mohanan PV, 2019, Comprehensive application of   alginate/carbon nanotubes blend bioink for direct 3D
               graphene: Emphasis on biomedical concerns.  Nano-Micro   printing of  vessel  constructs.  Int J Biol Macromol,  145:
               Lett, 11(1): 6.                                    262–271.
               https://doi.org/10.1007/s40820-019-0237-5          https://doi.org/10.1016/j.ijbiomac.2019.12.174


            Volume 9 Issue 5 (2023)                        236                         https://doi.org/10.18063/ijb.759
   239   240   241   242   243   244   245   246   247   248   249