Page 376 - IJB-9-5
P. 376
International Journal of Bioprinting Multifunctional hydrogel surgical training model
17. Liu X, Liu J, Lin S, et al., 2020, Hydrogel machines. Mater 27. Golberg A, Bruinsma BG, Uygun BE, et al., 2015, Tissue
Today, 36: 102–124. heterogeneity in structure and conductivity contribute to
cell survival during irreversible electroporation ablation by
https://doi.org/10.1016/j.mattod.2019.12.026
“electric field sinks’’. Sci Rep, 5(1): 8485.
18. Ligon SC, Liska R, Stampfl J, et al., 2017, Polymers for 3D https://doi.org/10.1038/srep08485
printing and customized additive manufacturing. Chem
Rev, 117(15): 10212–10290. 28. Joines W, Zhang Y, Li C, et al., 1994, The measured electrical-
properties of normal and malignant human tissues from 50
https://doi.org/10.1021/acs.chemrev.7b00074
to 900 MHz. Med Phys, 21(4): 547–550.
19. Jin Z, Li Y, Yu K, et al., 2021, 3D printing of physical organ
models: recent developments and challenges. Adv Sci, 8(17): https://doi.org/10.1118/1.597312
2101394. 29. Yue K, Cheng L, Yang L, et al., 2017, Thermal conductivity
measurement of anisotropic biological tissue in vitro.
https://doi.org/10.1002/advs.202101394
Int J Thermophys, 38(6): 92.
20. Ng WL, Chua CK, Shen YF, 2019, Print me an organ! Why
we are not there yet. Prog Polym Sci, 97: 101145. https://doi.org/10.1007/s10765-017-2214-x
30. Liu D, Jiang P, Wang Y, et al., 2023, Engineering
https://doi.org/10.1016/j.progpolymsci.2019.101145
tridimensional hydrogel tissue and organ phantoms with
21. Jiang P, Ji Z, Liu D, et al., 2022, Growing hydrogel organ tunable springiness. Adv Funct Mater, 33(17): 2214885.
mannequins with interconnected cavity structures. Adv https://doi.org/10.1002/adfm.202214885
Funct Mater, 32(13): 2108845.
31. van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ, 2012,
https://doi.org/10.1002/adfm.202108845
Needle-tissue interaction forces - a survey of experimental
22. Wang M, Li W, Hao J, et al., 2022, Molecularly cleavable data. Med Eng Phys, 34(6): 665–680.
bioinks facilitate high-performance digital light processing-
based bioprinting of functional volumetric soft tissues. https://doi.org/10.1016/j.medengphy.2012.04.007
Nat Commun, 13(1): 3317. 32. Bao X, Li W, Lu M, et al., 2016, Experiment study on
puncture force between MIS suture needle and soft tissue.
https://doi.org/10.1038/s41467-022-31002-2
Biosurface Biotribology, 2(2): 49–58.
23. Yang H, Ji M, Yang M, et al., 2021, Fabricating hydrogels to
mimic biological tissues of complex shapes and high fatigue https://doi.org/10.1016/j.bsbt.2016.05.001
resistance. Matter, 4(6): 1935–1946. 33. Grochola LF, Vonlanthen R, 2016, Surgical energy devices
https://doi.org/10.1016/j.matt.2021.03.011 or devices for hemostasis. Atlas Up Gastrointest Hepato-
Pancreato-Biliary Surg, 37–44.
24. Zhao Z, Vizetto DC, Moay ZK, et al., 2020, Composite https://doi.org/10.1007/978-3-662-46546-2_6
hydrogels in three-dimensional in vitro models. Front
Bioeng Biotechnol, 8: 611. 34. Chan YC, Li WF, Lin TL, et al., 2013, Lin’s clamp revisited:
A safe model for training in liver resection. Formos J Surg,
https://doi.org/10.3389/fbioe.2020.00611
46(2): 42–47.
25. Zhong M, Liu YT, Xie XM, 2015, Self-healable, super tough
graphene oxide-poly(acrylic acid) nanocomposite hydrogels https://doi.org/10.1016/j.fjs.2013.02.001
facilitated by dual cross-linking effects through dynamic 35. Liang P, Yu J, Lu MD, et al., 2013, Practice guidelines for
ionic interactions. J Mater Chem B, 3(19): 4001–4008. ultrasound-guided percutaneous microwave ablation
for hepatic malignancy. World J Gastroenterol, 19(33):
https://doi.org/10.1039/c5tb00075k
5430–5438.
26. Guimarães CF, Gasperini L, Marques AP, et al., 2020, The
stiffness of living tissues and its implications for tissue https://doi.org/10.3748/wjg.v19.i33.5430
engineering. Nat Rev Mater, 5(5): 351–370.
https://doi.org/10.1038/s41578-019-0169-1
Volume 9 Issue 5 (2023) 368 https://doi.org/10.18063/ijb.766

