Page 376 - IJB-9-5
P. 376

International Journal of Bioprinting                            Multifunctional hydrogel surgical training model



            17.   Liu X, Liu J, Lin S, et al., 2020, Hydrogel machines. Mater   27.   Golberg A, Bruinsma BG, Uygun BE,  et al., 2015, Tissue
               Today, 36: 102–124.                                heterogeneity in structure and conductivity contribute to
                                                                  cell survival during irreversible electroporation ablation by
               https://doi.org/10.1016/j.mattod.2019.12.026
                                                                  “electric field sinks’’. Sci Rep, 5(1): 8485.
            18.   Ligon SC, Liska R, Stampfl J, et al., 2017, Polymers for 3D   https://doi.org/10.1038/srep08485
               printing and customized additive manufacturing.  Chem
               Rev, 117(15): 10212–10290.                      28.   Joines W, Zhang Y, Li C, et al., 1994, The measured electrical-
                                                                  properties of normal and malignant human tissues from 50
               https://doi.org/10.1021/acs.chemrev.7b00074
                                                                  to 900 MHz. Med Phys, 21(4): 547–550.
            19.   Jin Z, Li Y, Yu K, et al., 2021, 3D printing of physical organ
               models: recent developments and challenges. Adv Sci, 8(17):   https://doi.org/10.1118/1.597312
               2101394.                                        29.   Yue K, Cheng L, Yang L, et al., 2017, Thermal conductivity
                                                                  measurement  of anisotropic biological  tissue  in  vitro.
               https://doi.org/10.1002/advs.202101394
                                                                  Int J Thermophys, 38(6): 92.
            20.   Ng WL, Chua CK, Shen YF, 2019, Print me an organ! Why
               we are not there yet. Prog Polym Sci, 97: 101145.  https://doi.org/10.1007/s10765-017-2214-x
                                                               30.   Liu D, Jiang  P, Wang Y,  et al., 2023, Engineering
               https://doi.org/10.1016/j.progpolymsci.2019.101145
                                                                  tridimensional hydrogel tissue and organ phantoms with
            21.   Jiang P, Ji Z, Liu D,  et al., 2022, Growing hydrogel organ   tunable springiness. Adv Funct Mater, 33(17): 2214885.
               mannequins with interconnected cavity structures.  Adv   https://doi.org/10.1002/adfm.202214885
               Funct Mater, 32(13): 2108845.
                                                               31.   van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ, 2012,
               https://doi.org/10.1002/adfm.202108845
                                                                  Needle-tissue interaction forces - a survey of experimental
            22.   Wang M,  Li W,  Hao J,  et al., 2022,  Molecularly cleavable   data. Med Eng Phys, 34(6): 665–680.
               bioinks facilitate high-performance digital light processing-
               based bioprinting of functional volumetric soft tissues.   https://doi.org/10.1016/j.medengphy.2012.04.007
               Nat Commun, 13(1): 3317.                        32.   Bao X, Li W, Lu M,  et  al., 2016, Experiment study on
                                                                  puncture force between MIS suture needle and soft tissue.
               https://doi.org/10.1038/s41467-022-31002-2
                                                                  Biosurface Biotribology, 2(2): 49–58.
            23.   Yang H, Ji M, Yang M, et al., 2021, Fabricating hydrogels to
               mimic biological tissues of complex shapes and high fatigue   https://doi.org/10.1016/j.bsbt.2016.05.001
               resistance. Matter, 4(6): 1935–1946.            33.   Grochola LF, Vonlanthen R, 2016, Surgical energy devices
               https://doi.org/10.1016/j.matt.2021.03.011         or devices for hemostasis.  Atlas Up Gastrointest Hepato-
                                                                  Pancreato-Biliary Surg, 37–44.
            24.   Zhao Z, Vizetto DC, Moay ZK,  et al., 2020, Composite   https://doi.org/10.1007/978-3-662-46546-2_6
               hydrogels in three-dimensional in vitro models.  Front
               Bioeng Biotechnol, 8: 611.                      34.   Chan YC, Li WF, Lin TL, et al., 2013, Lin’s clamp revisited:
                                                                  A safe model for training in liver resection. Formos J Surg,
               https://doi.org/10.3389/fbioe.2020.00611
                                                                  46(2): 42–47.
            25.   Zhong M, Liu YT, Xie XM, 2015, Self-healable, super tough
               graphene oxide-poly(acrylic acid) nanocomposite hydrogels   https://doi.org/10.1016/j.fjs.2013.02.001
               facilitated by dual cross-linking effects through dynamic   35.   Liang P, Yu J, Lu MD, et al., 2013, Practice guidelines for
               ionic interactions. J Mater Chem B, 3(19): 4001–4008.  ultrasound-guided percutaneous microwave ablation
                                                                  for hepatic malignancy.  World J Gastroenterol, 19(33):
               https://doi.org/10.1039/c5tb00075k
                                                                  5430–5438.
            26.   Guimarães CF, Gasperini L, Marques AP, et al., 2020, The
               stiffness of  living tissues  and  its implications  for  tissue   https://doi.org/10.3748/wjg.v19.i33.5430
               engineering. Nat Rev Mater, 5(5): 351–370.
               https://doi.org/10.1038/s41578-019-0169-1














            Volume 9 Issue 5 (2023)                        368                         https://doi.org/10.18063/ijb.766
   371   372   373   374   375   376   377   378   379   380   381