Page 205 - IJB-9-6
P. 205

International Journal of Bioprinting                              Attractiveness of 4D printing in medical field




               https://doi.org/10.1016/j.cej.2019.02.085       32.  Herring JP, 1999, Key intelligence topics: A process to
            20.  Sun L, Huang WM, Ding Z, et al., 2012, Stimulus-responsive   identify and define intelligence needs.  Compet  Intell  Rev,
               shape memory materials: A review.  Mater Des, 33:    10(2): 4–14.
               577–640.                                           https://doi.org/10.1002/(SICI)1520-6386(199932)10:2<4::AID-
               https://doi.org/10.1016/j.matdes.2011.04.065       CIR3>3.0.CO;2-C
            21.  Melocchi A, Uboldi M, Inverardi N, et al., 2019, Expandable   33.  Abdullah T, Okay O, 2023, 4D printing of body temperature-
               drug delivery system for gastric retention based on shape   responsive hydrogels based on poly(acrylic acid) with shape-
               memory polymers: Development via 4D printing and   memory and self-healing abilities. ACS Appl BioMater, 6(2):
               extrusion. Int J Pharm, 571: 118700.               703–711.
               https://doi.org/10.1016/j.ijpharm.2019.118700      https://doi.org/10.1021/acsabm.2c00939
            22.  McLellan  K,  Sun  YC,  Naguib  HE,  2022,  A  review  of  4D   34.  Song M, Zhu G, Guo J, 2023, 4D printing of biodegradable
               printing: Materials, structures, and designs towards the   shape memory double-network hydrogel for highly bionic
               printing  of  biomedical  wearable  devices.  Bioprinting,  27:   devices. J Mater Res Technol, 24: 2935–2945.
               e00217.                                            https://doi.org/10.1016/j.jmrt.2023.03.180
               https://doi.org/10.1016/j.bprint.2022.e00217    35.  Pyo  Y, Kang M,  Jang J,  et al., 2018,  Design  of a  shape
            23.  Ren L, He Y, Ren L, et al., 2023, Multi-parameter-encoded   memory composite(SMC) using 4D printing technology.
               4D printing of liquid crystal elastomers for programmable   Sens Actuator A Phys, 283: 187–195.
               shape morphing behaviors. Addit Manuf, 61: 103376.
                                                                  https://doi.org/10.1016/j.sna.2018.08.049
               https://doi.org/10.1016/j.addma.2022.103376
                                                               36.  Bodkhe S, Ermanni P, 2020, 3D printing of multifunctional
            24.  Zhang C, Lu X, Fei G, et al., 2019, 4D printing of a liquid   materials for sensing and actuation: Merging piezoelectricity
               crystal elastomer with a controllable orientation gradient.   with shape memory. Eur Polym J, 132: 109738.
               ACS Appl Mater Interfaces, 11(47): 44774–44782.
                                                                  https://doi.org/10.1016/j.eurpolymj.2020.109738
               https://doi.org/10.1021/acsami.9b18037
                                                               37.  Lin C, Liu L, Liu Y, et al., 2022, 4D printing of shape memory
            25.  Patil AN, Sarje SH, 2021, Additive manufacturing with   polybutylene succinate/polylactic acid (PBS/PLA) and its
               shape changing/memory materials: A review on 4D printing   potential applications. Compos Struct, 279: 114729.
               technology. Mater Today: Proc, 44: 1744–1749.
                                                                  https://doi.org/10.1016/j.compstruct.2021.114729
               https://doi.org/10.1016/j.matpr.2020.11.907
                                                               38.  Bodaghi M, Liao W, 2019, 4D printed tunable mechanical
            26.  Aldawood F, 2023, A comprehensive review of 4D printing:   metamaterials with shape memory operations. Smart Mater
               State of the arts, opportunities, and challenges. Actuators,   Struct, 28(4): 045019.
               12(3): 101.
                                                                  https://doi.org/10.1088/1361-665X/ab0b6b
               https://doi.org/10.3390/act12030101
                                                               39.  Xin X, Liu L, Liu Y,  et al., 2020, 4D printing auxetic
            27.  Pei E, Loh GH, 2018, Technological considerations for 4D   metamaterials  with  tunable,  programmable,  and
               printing: An overview. Prog Addit Manuf, 3(1-2): 95–107.
                                                                  reconfigurable  mechanical  properties.  Adv Funct Mater,
               https://doi.org/10.1007/s40964-018-0047-1          30(43): 2004226.
            28.  Zhang  Z,  Demir  KG,  Gu GX,  2019,  Developments  in   https://doi.org/10.1002/adfm.202004226
               4D-printing:  A review  on current  smart  materials,
               technologies, and applications. Int J Smart and Nano Mater,   40.  Wan M, Yu K, Sun H, 2022, 4D printed programmable
               24(1): 205–224.                                    auxetic metamaterials with shape memory effects. Compos
                                                                  Struct, 279: 114791.
               https://doi.org/10.3390/ijms24010814
                                                                  https://doi.org/10.1016/j.compstruct.2021.114791
            29.  Raina A, Haq MI, Javaid M,  et al., 2021, 4D printing for
               automotive industry applications. J Inst Eng, 102: 1–9.  41.  Simińska-Stanny J, Nizioł M, Szymczyk-Ziółkowska P,  et
                                                                  al., 2022, 4D printing of patterned multimaterial magnetic
               https://doi.org/10.1007/s40033-021-00284-z         hydrogel actuators. Addit Manuf, 49: 102506.
            30.  Jani JM, Leary M, Subic A, et al., 2014, A review of shape   https://doi.org/10.1016/j.addma.2021.102506
               memory alloy research, applications, and opportunities.
               Mater Des, 56: 1078–1113.                       42.  Mulakkal, MC, Trask RS, Ting VP, et al, 2018, Responsive
                                                                  cellulose-hydrogel  composite  ink  for  4D  printing. Mater
               https://doi.org/10.1016/j.matdes.2013.11.084       Des, 160: 108–118.
            31.  Scopus, 2023, Retrieved from ELSEVIER.
                                                                  https://0-doi-org.biblioteca-ils.tec.mx/10.1016/j.
               https://www.elsevier.com                           matdes.2018.09.009


            Volume 9 Issue 6 (2023)                        197                         https://doi.org/10.36922/ijb.1112
   200   201   202   203   204   205   206   207   208   209   210