Page 206 - IJB-9-6
P. 206
International Journal of Bioprinting Attractiveness of 4D printing in medical field
43. Mathews AS, Abraham S, Kumaran SK, et al, 2017, Bio nano 54. Suryavanshi P, Wang J, Duggal I, et al., 2023, Four-
ink for 4D printing membrane proteins. RSC Adv, 7(66): dimensional printed construct from temperature-responsive
41429–41434. self-folding feedstock for pharmaceutical applications with
machine learning modeling. Pharmaceutics, 15(4): 1266.
https://doi.org/10.1039/c7ra07650a
https://doi.org/10.3390/pharmaceutics15041266
44. Eryildiz M, 2023, Influence of process parameters on the
shape recovery properties of 4D-printed polylactic acid 55. Ren L, He Y, Ren L, et al., 2023, Multi-parameter-encoded
parts produced by fused deposition modeling. J Mater Eng 4D printing of liquid crystal elastomers for programmable
Perform, 32: 1–12. shape morphing behaviors. Addit Manuf, 61: 103376.
https://doi.org/10.1007/s11665-023-07946-x https://doi.org/10.1016/j.addma.2022.103376
45. Pieri K, Felix B, Zhang T, et al., 2023, Printing parameters 56. Großmann L, Kieckhöfer M, Weitschies W, et al., 2022,
of fused filament fabrication affect key properties of four- 4D prints of flexible dosage forms using thermoplastic
dimensional printed shape-memory polymers. 3D Print polyurethane with hybrid shape memory effect. Eur J Pharm
Addit Manuf, 10(2): 279–288. Biopharm, 181: 227–238.
https://doi.org/10.1089/3dp.2021.0072 https://doi.org/10.1016/j.ejpb.2022.11.009
46. Solis D, Czekanski A, 2022, The effect of the printing 57. Pandey H, Mohol S, Kandi R, 2022, 4D printing of tracheal
temperature on 4D DLP printed pNIPAM hydrogels. Soft scaffold using shape-memory polymer composite. Mater
Matter, 18(17): 3422–3429. Lett, 329: 133238.
https://doi.org/10.1039/D2SM00201A https://doi.org/10.1016/j.matlet.2022.133238
47. Stroganov V, Pant J, Stoychev G, et al., 2018, 4D 58. Bodaghi M, Damanpack A, Liao W, 2018, Triple shape memory
biofabrication: 3D cell patterning using shape-changing polymers by 4D printing. Smart Mater Struct, 27(6): 065010.
films. Adv Funct Mater, 28(11): 1706248.
https://doi.org/10.1088/1361-665X/aabc2a
https://doi.org/10.1002/adfm.201706248
59. Lee AY, Zhou A, An J, et al., 2020, Contactless reversible
48. Ding A, Lee S, Tang R, et al., 2022, 4D cell-condensate 4D-printing for 3D-to-3D shape morphing. Virtual Phys
bioprinting. Small. 18(36): 2202196. Prototyp, 15(4): 481–495.
https://doi.org/10.1002/smll.202202196 https://doi.org/10.1080/17452759.2020.1822189
49. Díaz-Payno P, Kalogeropoulou M, Muntz I, et al., 2023, 60. Lee AY, An J, Chua CK, 2017, Two-way 4D printing: a review
Swelling-dependent shape-based transformation of a human on the reversibility of 3D-printed shape memory materials.
mesenchymal stromal cells-laden 4D bioprinted construct for Engineering, 3(5): 663–674.
cartilage tissue engineering. Adv Healthc Mater, 12(2): 2201891.
61. Parimita S, Kumar A, Krishnaswamy H, et al., 2023, Solvent
https://doi.org/10.1002/adhm.202201891 triggered shape morphism of 4D printed hydrogels. J Manuf
Process, 85: 875–884.
50. Kim S, Seo Y, Yeon Y, et al., 2020, 4D-bioprinted silk
hydrogels for tissue engineering. Biomaterials, 260: 120281. https://doi.org/10.1016/j.jmapro.2022.11.065
https://doi.org/10.1016/j.biomaterials.2020.120281 62. Wu J, Zhao Z, Kuang X, et al., 2018, Reversible shape change
51. Zhao J, Kazemi H, Kim H, et al., 2022, Effect of variations in structures by grayscale pattern 4D printing. Multifunct
manufacturing and material properties on the self-folding Mater, 1(1): 015002.
behaviors of hydrogel and elastomer bilayer structures. Soft https://doi.org/10.1088/2399-7532/aac322
Matter, 18(46): 8771–8778.
63. Melocchi A, Uboldi M, Inverardi N, et al., 2019, Expandable
https://doi.org/10.1039/D2SM01104B drug delivery system for gastric retention based on shape
memory polymers: Development via 4D printing and
52. Inverardi N, Scalet G, Melocchi A, et al., 2021, Experimental
and computational analysis of a pharmaceutical-grade extrusion. Int J Pharm, 571: 118700.
shape memory polymer applied to the development of https://doi.org/10.1016/j.ijpharm.2019.118700
gastroretentive drug delivery systems. J Mech Behav Biomed 64. Zu S, Wang Z, Zhang S, et al., 2022, A bioinspired 4D printed
Mater, 124: 104814.
hydrogel capsule for smart controlled drug release. Mater
https://doi.org/10.1016/j.jmbbm.2021.104814 Today Chem, 24: 100789.
53. Wagner M, Chen T, Shea K, 2017, Large shape transforming https://doi.org/10.1016/j.mtchem.2022.100789
4D auxetic structures. 3D Print Addit Manuf, 4(3): 133–142.
65. Lin C, Zhang L, Liu Y, et al., 2020, 4D printing of
https://doi.org/10.1089/3dp.2017.0027 personalized shape memory polymer vascular stents with
Volume 9 Issue 6 (2023) 198 https://doi.org/10.36922/ijb.1112

