Page 278 - IJB-9-6
P. 278

International Journal of Bioprinting                                     3D bioprinting for vascular system




               https://doi.org/10.1088/1758-5090/aabd56        25.  Duan B, Hockaday LA, Kang KH, et al., 2013, 3D bioprinting
                                                                  of heterogeneous aortic valve conduits with alginate/gelatin
            14.  Wang P, Sun Y, Shi X,  et  al., 2021, 3D printing of tissue
               engineering scaffolds: A focus on vascular regeneration.   hydrogels. 101(5): 1255–1264.
               Biodes Manuf, 4(2):. 344.                          https://doi.org/10.1002/jbm.a.34420.3D
               https://doi.org/10.1007/S42242-020-00109-0      26.  Rioux Y, Fradette J, Maciel Y,  et al., 2022, Biofabrication
            15.  Li H, Tan C, Li L, 2018, Review of 3D printable hydrogels   of sodium alginate hydrogel scaffolds for heart valve tissue
               and constructs. Mater Des, 159(5): 20–38.          engineering. Int J Mol Sci, 23(8567): 8567–8581.
               https://doi.org/10.1016/j.matdes.2018.08.023       https://doi.org/10.3390/ijms23158567
            16.  Zieliński PS, Gudeti PKR, Rikmanspoel T, et al., 2023, 3D   27.  Zhou X, Nowicki M, Sun H,  et al., 2020, 3D bioprinting-
               printing of bio-instructive materials: Toward directing the   tunable small-diameter blood vessels with biomimetic biphasic
               cell. Bioact Mater, 19(1): 292–327.                cell layers. Appl Mater Interfaces, 12(41): 45904–45915.
               https://doi.org/10.1016/j.bioactmat.2022.04.008    https://doi.org/10.1021/acsami.0c14871
            17.  Decante G, Costa JB, Silva-Correia J, et al., 2021, Engineering   28.  Kamaraj M, Giri PS, Mahapatra S, et al., 2022, Bioengineering
               bioinks for 3D bioprinting.  Biofabrication, 13(032001):   strategies for 3D bioprinting of tubular construct using
               032001–032031.                                     tissue-specific decellularized extracellular matrix. Int J Biol
                                                                  Macromol, 223(PA): 1405–1419.
               https://doi.org/10.1088/1758-5090/abec2c
                                                                  https://doi.org/10.1016/j.ijbiomac.2022.11.064
            18.  Chen YH, Chang HH, Kuo CC,  et  al., 2022, Impact of
               prosthesis-patient mismatch after transcatheter aortic valve   29.  Gold KA,  Saha B,  Krishna N,  2021, 3D bioprinted  multi-
               replacement in Asian patients. Annal Thorac Surg, 114(5):   cellular vascular models. Adv Healthc Mater, 10(21): e2101141.
               1612–1619.                                         https://doi.org/10.1002/ADHM.202101141
               https://doi.org/10.1016/j.athoracsur.2021.09.016  30.  Li L, Qin S, Peng J, 2020, Engineering gelatin-based alginate/
            19.  Kucukgul C, Ozler S, Inci I, et al., 2015, 3D bioprinting of   carbon nanotubes blend bioink for direct 3D printing of
               biomimetic aortic vascular constructs with self-supporting   vessel constructs. Int J Biol Macromol, 145(15): 262–271.
               cells. Biotechnol Bioeng, 112(4): 811–821.         https://doi.org/10.1016/j.ijbiomac.2019.12.174
               https://doi.org/10.1002/bit.25493               31.  Liu Y, Zhang Y, An Z, et al., 2021, Slide-ring structure-based
            20.  Kucukgul C, Ozler B, Karakas HE, et al., 2013, 3D hybrid   double-network hydrogel with enhanced stretchability and
               bioprinting of macrovascular structures. Procedia Eng, 59:   toughness for 3d-bio-printing and its potential application
               183–192.                                           as artificial small-diameter blood vessels.  Appl  Bio  Mater,
                                                                  4(12): 8597–8606.
               https://doi.org/10.1016/j.proeng.2013.05.109
                                                                  https://doi.org/10.1021/acsabm.1c01052
            21.  Oropeza BP, Adams JR, Furth ME, et al., 2022, Bioprinting
               of decellularized porcine cardiac tissue for large-scale aortic   32.  Freeman S, Ramos R, Alexis Chando P, 2019, A bioink blend
               models. Front Bioeng Biotechnol, 10(March): 1–9.   for rotary 3D bioprinting tissue engineered small-diameter
                                                                  vascular constructs. Acta Biomater, 95: 152–164.
               https://doi.org/10.3389/fbioe.2022.855186
                                                                  https://doi.org/10.1016/j.actbio.2019.06.052
            22.  Potere F, Belgio B, Croci G, 2022, 3D bioprinting of multi-
               layered segments of a vessel-like structure with ECM and novel   33.  Zhou Y, Gui Q, Yu W, 2019, Interfacial diffusion printing:
               derived bioink. Front Bioeng Biotechnol, 10(August): 1–13.  An efficient manufacturing technique for artificial tubular
                                                                  grafts. ACS Biomater Sci Eng, 5(11): 6311–6318.
               https://doi.org/10.3389/fbioe.2022.918690
                                                                  https://doi.org/10.1021/acsbiomaterials.9b01293
            23.  Hockaday LA, Kang K, Colangelo N, 2012, Rapid 3D printing
               of anatomically accurate and mechanically heterogeneous   34.  Jin Q, Jin G, Ju J, 2022, Bioprinting small-diameter vascular
               aortic valve hydrogel scaffolds.  Biofabrication, 4(3):    vessel with endothelium and smooth muscle by the approach
               035005–035017.                                     of two-step crosslinking process. Biotechnol Bioeng, 119(6):
                                                                  1673–1684.
               https://doi.org/10.1088/1758-5082/4/3/035005
                                                                  https://doi.org/10.1002/bit.28075
            24.  Vukicevic M, Mehta SM, Grande-Allen KJ,  et al., 2022,
               Development of 3D  printed  mitral  valve  constructs   35.  Zhang Z, Wu C, Dai C, 202, A multi-axis robot-based bioprinting
               for transcatheter device modeling of tissue and device   system supporting natural cell function preservation and
               deformation. Ann Biomed Eng, 50(4): 426–439.       cardiac tissue fabrication. Bioact Mater, 18(1): 138.
               https://doi.org/10.1007/s10439-022-02927-y         https://doi.org/10.1016/J.BIOACTMAT.2022.02.009




            Volume 9 Issue 6 (2023)                        270                          https://doi.org/10.36922/ijb.0012
   273   274   275   276   277   278   279   280   281   282   283