Page 278 - IJB-9-6
P. 278
International Journal of Bioprinting 3D bioprinting for vascular system
https://doi.org/10.1088/1758-5090/aabd56 25. Duan B, Hockaday LA, Kang KH, et al., 2013, 3D bioprinting
of heterogeneous aortic valve conduits with alginate/gelatin
14. Wang P, Sun Y, Shi X, et al., 2021, 3D printing of tissue
engineering scaffolds: A focus on vascular regeneration. hydrogels. 101(5): 1255–1264.
Biodes Manuf, 4(2):. 344. https://doi.org/10.1002/jbm.a.34420.3D
https://doi.org/10.1007/S42242-020-00109-0 26. Rioux Y, Fradette J, Maciel Y, et al., 2022, Biofabrication
15. Li H, Tan C, Li L, 2018, Review of 3D printable hydrogels of sodium alginate hydrogel scaffolds for heart valve tissue
and constructs. Mater Des, 159(5): 20–38. engineering. Int J Mol Sci, 23(8567): 8567–8581.
https://doi.org/10.1016/j.matdes.2018.08.023 https://doi.org/10.3390/ijms23158567
16. Zieliński PS, Gudeti PKR, Rikmanspoel T, et al., 2023, 3D 27. Zhou X, Nowicki M, Sun H, et al., 2020, 3D bioprinting-
printing of bio-instructive materials: Toward directing the tunable small-diameter blood vessels with biomimetic biphasic
cell. Bioact Mater, 19(1): 292–327. cell layers. Appl Mater Interfaces, 12(41): 45904–45915.
https://doi.org/10.1016/j.bioactmat.2022.04.008 https://doi.org/10.1021/acsami.0c14871
17. Decante G, Costa JB, Silva-Correia J, et al., 2021, Engineering 28. Kamaraj M, Giri PS, Mahapatra S, et al., 2022, Bioengineering
bioinks for 3D bioprinting. Biofabrication, 13(032001): strategies for 3D bioprinting of tubular construct using
032001–032031. tissue-specific decellularized extracellular matrix. Int J Biol
Macromol, 223(PA): 1405–1419.
https://doi.org/10.1088/1758-5090/abec2c
https://doi.org/10.1016/j.ijbiomac.2022.11.064
18. Chen YH, Chang HH, Kuo CC, et al., 2022, Impact of
prosthesis-patient mismatch after transcatheter aortic valve 29. Gold KA, Saha B, Krishna N, 2021, 3D bioprinted multi-
replacement in Asian patients. Annal Thorac Surg, 114(5): cellular vascular models. Adv Healthc Mater, 10(21): e2101141.
1612–1619. https://doi.org/10.1002/ADHM.202101141
https://doi.org/10.1016/j.athoracsur.2021.09.016 30. Li L, Qin S, Peng J, 2020, Engineering gelatin-based alginate/
19. Kucukgul C, Ozler S, Inci I, et al., 2015, 3D bioprinting of carbon nanotubes blend bioink for direct 3D printing of
biomimetic aortic vascular constructs with self-supporting vessel constructs. Int J Biol Macromol, 145(15): 262–271.
cells. Biotechnol Bioeng, 112(4): 811–821. https://doi.org/10.1016/j.ijbiomac.2019.12.174
https://doi.org/10.1002/bit.25493 31. Liu Y, Zhang Y, An Z, et al., 2021, Slide-ring structure-based
20. Kucukgul C, Ozler B, Karakas HE, et al., 2013, 3D hybrid double-network hydrogel with enhanced stretchability and
bioprinting of macrovascular structures. Procedia Eng, 59: toughness for 3d-bio-printing and its potential application
183–192. as artificial small-diameter blood vessels. Appl Bio Mater,
4(12): 8597–8606.
https://doi.org/10.1016/j.proeng.2013.05.109
https://doi.org/10.1021/acsabm.1c01052
21. Oropeza BP, Adams JR, Furth ME, et al., 2022, Bioprinting
of decellularized porcine cardiac tissue for large-scale aortic 32. Freeman S, Ramos R, Alexis Chando P, 2019, A bioink blend
models. Front Bioeng Biotechnol, 10(March): 1–9. for rotary 3D bioprinting tissue engineered small-diameter
vascular constructs. Acta Biomater, 95: 152–164.
https://doi.org/10.3389/fbioe.2022.855186
https://doi.org/10.1016/j.actbio.2019.06.052
22. Potere F, Belgio B, Croci G, 2022, 3D bioprinting of multi-
layered segments of a vessel-like structure with ECM and novel 33. Zhou Y, Gui Q, Yu W, 2019, Interfacial diffusion printing:
derived bioink. Front Bioeng Biotechnol, 10(August): 1–13. An efficient manufacturing technique for artificial tubular
grafts. ACS Biomater Sci Eng, 5(11): 6311–6318.
https://doi.org/10.3389/fbioe.2022.918690
https://doi.org/10.1021/acsbiomaterials.9b01293
23. Hockaday LA, Kang K, Colangelo N, 2012, Rapid 3D printing
of anatomically accurate and mechanically heterogeneous 34. Jin Q, Jin G, Ju J, 2022, Bioprinting small-diameter vascular
aortic valve hydrogel scaffolds. Biofabrication, 4(3): vessel with endothelium and smooth muscle by the approach
035005–035017. of two-step crosslinking process. Biotechnol Bioeng, 119(6):
1673–1684.
https://doi.org/10.1088/1758-5082/4/3/035005
https://doi.org/10.1002/bit.28075
24. Vukicevic M, Mehta SM, Grande-Allen KJ, et al., 2022,
Development of 3D printed mitral valve constructs 35. Zhang Z, Wu C, Dai C, 202, A multi-axis robot-based bioprinting
for transcatheter device modeling of tissue and device system supporting natural cell function preservation and
deformation. Ann Biomed Eng, 50(4): 426–439. cardiac tissue fabrication. Bioact Mater, 18(1): 138.
https://doi.org/10.1007/s10439-022-02927-y https://doi.org/10.1016/J.BIOACTMAT.2022.02.009
Volume 9 Issue 6 (2023) 270 https://doi.org/10.36922/ijb.0012

