Page 280 - IJB-9-6
P. 280

International Journal of Bioprinting                                     3D bioprinting for vascular system




            57.  Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional   Effect on bone regeneration.  Biofabrication, 11(4):
               biomaterials for tissue engineering.  Curr Opin Biotechnol,   045002-045019.
               40: 103–112.
                                                                  https://doi.org/10.1088/1758-5090/ab2620
               https://doi.org/10.1016/j.copbio.2016.03.014
                                                               68.  Chansoria P, Asif S, Gupta N,  et al., 2022, Multi-scale
            58.  Dobos A, Gantner F, Markovic M, 2020, On-chip high-  anisotropic tissue biofabrication via bulk acoustic patterning
               definition bioprinting of microvascular structures.   of cells and functional additives in hybrid bioinks.  Adv
               Biofabrication, 13(1).                             Healthc Mater, 11(10): 2102351-2102367.
               https://doi.org/10.1088/1758-5090/abb063           https://doi.org/10.1002/adhm.202102351
            59.  Xue D, Wang Y, Zhang J,  et al., 2018, Projection-based   69.  Maiullari F, Costantini M, Milan M, 2018, A multi-
               3D printing of cell patterning scaffolds with multi-scale   cellular 3D bioprinting approach for vascularized heart
               channels. ACS Appl Mater Interfaces, 10(23): 19428–19435.  tissue engineering based on HUVECs and iPSC-derived
               https://doi.org/10.1021/acsami.8b03867             cardiomyocytes. Sci Rep, 8(1): 13532-13547 .
            60.  Anada  T,  Pan  C,  Stahl  A,  2019,  Vascularized  bone-  https://doi.org/10.1038/s41598-018-31848-x
               mimetic hydrogel constructs by 3D bioprinting to promote   70.  Son J, Hong SJ, Lim JW,  et al., 2021, Engineering tissue-
               osteogenesis and angiogenesis.  Int J  Mol Sci, 20(5):    specific, multi-scale microvasculature with a capillary
               1096-1104.
                                                                  network for prevascularized tissue.  Small Methods, 5(10):
               https://doi.org/10.3390/ijms20051096               2100632-2100643.
            61.  Liu Y, Zhang Y, Mei T, 2022, hESCs-derived early vascular   https://doi.org/10.1002/smtd.202100632
               cell spheroids for cardiac tissue vascular engineering
               and myocardial infarction treatment.  Adv Sci, 9(9):    71.  Nie J, Gao Q, Xie C, 2020, Construction of multi-scale
               2104299-2104311.                                   vascular chips and modelling of the interaction between
                                                                  tumours and blood vessels. Mater Horiz, 7(1): 82–92.
               https://doi.org/10.1002/advs.202104299
                                                                  https://doi.org/10.1039/c9mh01283d
            62.  Benmeridja L, De Moor L, De Maere E, 2022, High-
               throughput fabrication of vascularized adipose microtissues   72.  Szklanny AA, Machour M, Redenski I, 2021, 3D bioprinting
               for 3D bioprinting. J Tissue Eng Regen Med, 14(6): 840–854.  of engineered tissue flaps with hierarchical vessel networks
                                                                  (VesselNet) for direct host-to-implant perfusion. Adv Mater,
               https://doi.org/10.1002/term.3051                  33(42): 2102661-2102679.
            63.  de Moor L, Smet J, Plovyt M, 2021, Engineering   https://doi.org/10.1002/adma.202102661
               microvasculature  by  3D  bioprinting  of  prevascularized
               spheroids in photo-crosslinkable gelatin. Biofabrication, 13(4):   73.  McFetridge PS, Abe K, Horrocks M, et al., 2007, Vascular
               045021-045041.                                     tissue engineering: Bioreactor design considerations for
                                                                  extended culture of primary human vascular smooth muscle
               https://doi.org/10.1088/1758-5090/ac24de
                                                                  cells. ASAIO J, 53(5): 623–630.
            64.  Dogan L, Scheuring R, Wagner N, 2021, Human iPSC-derived
               mesodermal progenitor cells preserve their vasculogenesis   https://doi.org/10.1097/MAT.0b013e31812f3b7e
               potential after extrusion and form hierarchically organized   74.  Wang J, Kural M, Wu J, 2021, An ex vivo physiologic and
               blood vessels. Biofabrication, 13(4): 045028-045044.  hyperplastic vessel culture model to study intra-arterial
               https://doi.org/10.1088/1758-5090/ac26ac           stent therapies. Biomaterials, 275: 120911-120924.
            65.  O’Connor C, Brady E, Zheng Y, et al., 2022, Engineering the   https://doi.org/10.1016/j.biomaterials.2021.120911
               multi-scale complexity of vascular networks. Nat Rev Mater,   75.  Syedain ZH, Meier LA, Bjork JW, et al., 2011, Implantable
               7(9): 702–716.                                     arterial grafts from human fibroblasts and fibrin using a
               https://doi.org/10.1038/s41578-022-00447-8         multi-graft pulsed flow-stretch bioreactor with non-invasive
                                                                  strength monitoring. Biomaterials, 32(3): 714–722.
            66.  Mirabella T, Macarthur J, Cheng D, 2017, 3D-printed
               vascular networks direct therapeutic angiogenesis in   https://doi.org/10.1016/j.biomaterials.2010.09.019
               ischaemia. Nat Biomed Eng, 1(6): 0083-0090      76.  Kawecki F, L’Heureux N, 2023, Current biofabrication
               https://doi.org/10.1038/s41551-017-0083            methods for vascular tissue engineering and an introduction
                                                                  to biological textiles. Biofabrication, 15(2): 022004-022025.
            67.  Kérourédan O, Hakobyan D, Remy M, 2019, In situ
               prevascularization  designed by laser-assisted  bioprinting:   https://doi.org/10.1088/1758-5090/acbf7a





            Volume 9 Issue 6 (2023)                        272                          https://doi.org/10.36922/ijb.0012
   275   276   277   278   279   280   281   282   283   284   285