Page 279 - IJB-9-6
P. 279

International Journal of Bioprinting                                     3D bioprinting for vascular system




            36.  Fazal F, Diaz Sanchez FJ, Waqas M, et al., 2021, A modified   https://doi.org/10.1021/acs.biomac.0c00947
               3D printer as a hybrid bioprinting-electrospinning system   47.  Yu H, Gong W, Mei J, 2022, The efficacy of a paeoniflorin-
               for use in vascular tissue engineering applications. Med Eng   sodium  alginate-gelatin  skin  scaffold  for  the  treatment  of
               Phys, 94: 52–60.
                                                                  diabetic wound: An in vivo study in a rat model. Biomed
               https://doi.org/10.1016/j.medengphy.2021.06.005    Pharmacotherap, 151: 113165-113171.
            37.  Jin Q, Fu Y, Zhang G, 2022, Nanofiber electrospinning   https://doi.org/10.1016/j.biopha.2022.113165
               combined with rotary bioprinting for fabricating small-  48.  Cheng F, Cao X, Li H, 2019, Generation of cost-effective
               diameter vessels with endothelium and smooth muscle.   paper-based tissue models through matrix-assisted
               Compos B Eng, 234(1): 109691-109700.
                                                                  sacrificial 3D printing. Nano Lett, 19(6): 3603–3611.
               https://doi.org/10.1016/j.compositesb.2022.109691
                                                                  https://doi.org/10.1021/acs.nanolett.9b00583
            38.  Größbacher G, Bartolf-Kopp M, Gergely C, 2023, Volumetric
               printing across melt electrowritten scaffolds fabricates   49.  Zheng J, Liu Y, Hou C, 2022, Ovary-derived decellularized
               multi‐material living constructs with tunable architecture   extracellular matrix-based bioink for fabricating 3D primary
               and mechanics. Adv Mater, 2300756–2300773.         ovarian cells-laden structures for mouse ovarian failure
                                                                  correction. Int J Bioprint, 8(3): 269–282.
               https://doi.org/10.1002/adma.202300756
                                                                  https://doi.org/10.18063/IJB.V8I3.597
            39.  Cao P, Tao L, Gong J, 2021, 4D printing of a sodium alginate
               hydrogel with step-wise shape deformation based on   50.  Oliveira H, Medina C, Labrunie G, 2022, Cell-assembled
               variation of crosslinking density.  ACS Appl Polym Mater,   extracellular matrix (CAM): A human biopaper for the
               3(12): 6167–6175.                                  biofabrication of pre-vascularized tissues able to connect
                                                                  to the host circulation in vivo.  Biofabrication, 14(1):
               https://doi.org/10.1021/acsapm.1c01034             015005-015019.
            40.  Kitana W, Apsite I, Hazur J, et al., 2023, 4D biofabrication   https://doi.org/10.1088/1758-5090/ac2f81
               of t-shaped vascular bifurcation. Adv Mater Technol, 8(1):
               2200429-2200439.                                51.  Li S, Wang W, Li W, 2021, Fabrication of thermoresponsive
                                                                  hydrogel scaffolds with engineered microscale vasculatures.
               https://doi.org/10.1002/admt.202200429             Adv Funct Mater, 31(27): 2102685-2102699.
            41.  Kirillova A, Maxson R, Stoychev G,  et al., 2017, 4D   https://doi.org/10.1002/adfm.202102685
               biofabrication using shape-morphing hydrogels. Adv Mater,
               29(46): 1703443-1703450.                        52.  Thomas A, Orellano I, Lam T, 2020, Vascular bioprinting
                                                                  with enzymatically degradable bioinks via multi-material
               https://doi.org/10.1002/adma.201703443
                                                                  projection-based stereolithography.  Acta Biomater, 117:
            42.  Wu Z, Cai H, Ao Z, et al., 2021, Microfluidic printing of   121–132.
               tunable hollow microfibers for vascular tissue engineering.
               Adv Mater Technol, 6(8): 2000683-2000691.          https://doi.org/10.1016/j.actbio.2020.09.033
               https://doi.org/10.1002/admt.202000683          53.  Zeng X,  Meng Z,  He J, 2022, Embedded bioprinting for
                                                                  designer 3D tissue constructs with complex structural
            43.  Muthusamy S, Kannan S, Lee M, 2021, 3D bioprinting and   organization. Acta Biomater, 140: 1–22.
               microscale organization of vascularized tissue constructs using
               collagen-based bioink. Biotechnol Bioeng, 118(8): 3150–3163.  https://doi.org/10.1016/j.actbio.2021.11.048
               https://doi.org/10.1002/bit.27838               54.  Zhang S, Qi C, Zhang W, 2022, In‐situ endothelialization of
                                                                  freeform 3D network of interconnected tubular channels via
            44.  Cidonio G, Glinka M, Kim Y, 2020, Nanoclay-based   interfacial coacervation by aqueous‐in‐aqueous embedded
               3D printed scaffolds promote vascular ingrowth ex vivo   bioprinting. Adv Mater, 35(7): 2209263–2209269.
               and  generate  bone  mineral  tissue  in  vitro  and  in  vivo.
               Biofabrication, 12(3): 035010-035025.              https://doi.org/10.1002/adma.202209263
               https://doi.org/10.1088/1758-5090/ab8753        55.  Hinton TJ, Jallerat Q, Palchesko R, 2015, Three-dimensional
                                                                  printing of complex biological structures by freeform
            45.  Liu C, Campbell S, Li J, 2022, High throughput   reversible embedding of suspended hydrogels.  Sci Adv,
               omnidirectional printing of tubular microstructures from   1(9): e1500758-e1500767.
               elastomeric polymers. Adv Healthc Mater, 11(23): 2201346–
               2201359.                                           https://doi.org/10.1126/sciadv.1500758
               https://doi.org/10.1002/adhm.202201346          56.  Lee A, Hudson A, Shiwarski D, 2019, 3D bioprinting
                                                                  of collagen to rebuild components of the human heart.
            46.  Barrs RW, Jia J, Ward M, 2021, Engineering a chemically
               defined hydrogel bioink for direct bioprinting of   365(6452): 482–487.
               microvasculature. Biomacromolecules, 22(2): 275–288.  https://doi.org/10.1126/science.aav9051


            Volume 9 Issue 6 (2023)                        271                          https://doi.org/10.36922/ijb.0012
   274   275   276   277   278   279   280   281   282   283   284