Page 31 - IJB-9-6
P. 31
International Journal of Bioprinting CFD analysis for multimaterial bioprinting conditions
3. Trujillo-De Santiago G, Alvarez M, Samandari M, et al., 14. Kang D, Hong G, An S, et al., 2020, Bioprinting of
2018, Chaotic printing: Using chaos to fabricate densely multiscaled hepatic lobules within a highly vascularized
packed micro- and nanostructures at high resolution and construct. Small, 16(13):1–9.
speed. Mater Horizons, 5(5):813–822.
https://doi.org/10.1002/smll.201905505
https://doi.org/10.1039/c8mh00344k
15. Chávez-Madero C, Derby MD, Samandari M, et al.,
4. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks for 2020, Using chaotic advection for facile high-throughput
3D bioprinting: An overview. Biomater Sci, 6(6):915–946. fabrication of ordered multilayer micro-and nanostructures:
Continuous chaotic printing. Biofabrication, 12(3).
https://doi.org/10.1039/c7bm00765e
https://doi.org/10.1088/1758-5090/ab84cc
5. Bartolo P, Malshe A, Ferraris E, et al., 2022, 3D bioprinting:
Materials, processes, and applications. CIRP Ann, 71(2): 16. Ravanbakhsh H, Karamzadeh V, Bao G, et al., 2021,
577–597. Emerging technologies in multi-material bioprinting. Adv
Mater, 33(49).
https://doi.org/10.1016/j.cirp.2022.06.001
https://doi.org/10.1002/adma.202104730
6. Liu F, Vyas C, Yang J, et al., 2021, A review of hybrid
biomanufacturing systems applied in tissue regeneration, 17. Costantini M, Testa S, Mozetic P, et al., 2017, Microfluidic-
in Virtual Prototyping & Bio Manufacturing in Medical enhanced 3D bioprinting of aligned myoblast-laden
Applications, 187–213. hydrogels leads to functionally organized myofibers in vitro
and in vivo. Biomaterials, 131:98–110.
https://doi.org/10.1007/978-3-030-35880-8_8
https://doi.org/10.1016/j.biomaterials.2017.03.026
7. Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of
biomaterials. Chem Rev, 120(19):10793–10833. 18. Prendergast ME, Burdick JA, 2020, Recent advances in
enabling technologies in 3D printing for precision medicine.
https://doi.org/10.1021/acs.chemrev.0c00008
Adv Mater, 32(13).
8. Ng WL, Xi H, Shkolnikov V, et al., 2021, Controlling https://doi.org/10.1002/adma.201902516
droplet impact velocity and droplet volume: Key factors to
achieving high cell viability in sub-nonoliter droplet-based 19. Sodupe-Ortega E, Sanz-Garcia A, Pernia-Espinoza A, et al.,
bioprinting. Int J Bioprint, 8(1):424. 2018, Accurate calibration in multi-material 3D bioprinting
for tissue engineering. Materials (Basel), 11(8):1–19.
https://doi.org/10.18063/IJB.V8I1.424
https://doi.org/10.3390/ma11081402
9. Zhuang P, Ng WL, An J, et al., 2019, Layer-by-layer
ultraviolet assisted extrusion-based (UAE) bioprinting of 20. Kolesky DB, Truby RL, Gladman AS, et al.,2014, 3D
hydrogel constructs with high aspect ratio for soft tissue bioprinting of vascularized, heterogeneous cell-laden tissue
engineering applications. PLoS One, 14(6):e0216776. constructs. Adv Mater, 26(19):3124–3130.
https://doi.org/10.1371/journal.pone.0216776 https://doi.org/10.1002/adma.201305506
10. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization- 21. Nadernezhad A, Khani N, Skvortsov G, et al., 2016,
based bioprinting-process, materials, applications and Multifunctional 3D printing of heterogeneous hydrogel
regulatory challenges. Biofabrication, 12(2):022001. structures. Sci Rep, 6.
https://doi.org/10.1088/1758-5090/ab6034 https://doi.org/10.1038/srep33178
11. Li W, Mille LS, Robledo JA, et al., 2020, Recent advances 22. Liu W, Zhang YS, Heinrich MA, et al., 2017, Rapid
in formulating and processing biomaterial inks for vat continuous multimaterial extrusion bioprinting. Adv Mater,
polymerization-based 3D printing. Adv Healthc Mater, 29(3):1–8.
9(15):e2000156.
https://doi.org/10.1002/adma.201604630
https://doi.org/10.1002/adhm.202000156
23. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
12. Ning L, Chen X, 2017, A brief review of extrusion-based bioprinting of heterogeneous 3D tissue constructs using
tissue scaffold bio-printing. Biotechnol J, 12(8). low-viscosity bioink. Adv Mater, 28(4):677–684a.
https://doi.org/10.1002/biot.201600671 https://doi.org/10.3390/MI11050459
13. Ozbolat IT, Hospodiuk M, 2016, Current advances and 24. Wang J, Zhang N, Chen J, et al., 2019, Finding the
future perspectives in extrusion-based bioprinting. optimal design of a passive microfluidic mixer. Lab Chip,
Biomaterials, 76:321–343. 19(21):3618–3627.
https://doi.org/10.1016/j.biomaterials.2015.10.076 https://doi.org/10.1039/c9lc00546c
Volume 9 Issue 6 (2023) 23 https://doi.org/10.36922/ijb.0219

