Page 31 - IJB-9-6
P. 31

International Journal of Bioprinting                        CFD analysis for multimaterial bioprinting conditions



            3.   Trujillo-De Santiago G, Alvarez M, Samandari M,  et al.,   14.  Kang D, Hong G, An S,  et al., 2020, Bioprinting of
               2018, Chaotic printing: Using chaos to fabricate densely   multiscaled hepatic lobules within a highly vascularized
               packed micro- and nanostructures at high resolution and   construct. Small, 16(13):1–9.
               speed. Mater Horizons, 5(5):813–822.
                                                                  https://doi.org/10.1002/smll.201905505
               https://doi.org/10.1039/c8mh00344k
                                                               15.  Chávez-Madero C, Derby MD, Samandari M,  et  al.,
            4.   Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks for   2020,  Using  chaotic  advection for  facile  high-throughput
               3D bioprinting: An overview. Biomater Sci, 6(6):915–946.  fabrication of ordered multilayer micro-and nanostructures:
                                                                  Continuous chaotic printing. Biofabrication, 12(3).
               https://doi.org/10.1039/c7bm00765e
                                                                  https://doi.org/10.1088/1758-5090/ab84cc
            5.   Bartolo P, Malshe A, Ferraris E, et al., 2022, 3D bioprinting:
               Materials, processes, and applications.  CIRP Ann, 71(2):   16.  Ravanbakhsh H, Karamzadeh V, Bao G,  et al., 2021,
               577–597.                                           Emerging technologies in multi-material bioprinting.  Adv
                                                                  Mater, 33(49).
               https://doi.org/10.1016/j.cirp.2022.06.001
                                                                  https://doi.org/10.1002/adma.202104730
            6.   Liu F, Vyas C, Yang J,  et al., 2021, A review of hybrid
               biomanufacturing systems applied in tissue regeneration,   17.  Costantini M, Testa S, Mozetic P, et al., 2017, Microfluidic-
               in  Virtual Prototyping & Bio Manufacturing in Medical   enhanced 3D bioprinting of aligned myoblast-laden
               Applications, 187–213.                             hydrogels leads to functionally organized myofibers in vitro
                                                                  and in vivo. Biomaterials, 131:98–110.
               https://doi.org/10.1007/978-3-030-35880-8_8
                                                                  https://doi.org/10.1016/j.biomaterials.2017.03.026
            7.   Li X, Liu B, Pei B,  et al., 2020, Inkjet bioprinting of
               biomaterials. Chem Rev, 120(19):10793–10833.    18.  Prendergast ME, Burdick JA, 2020, Recent advances in
                                                                  enabling technologies in 3D printing for precision medicine.
               https://doi.org/10.1021/acs.chemrev.0c00008
                                                                  Adv Mater, 32(13).
            8.   Ng WL, Xi H, Shkolnikov V,  et  al., 2021, Controlling   https://doi.org/10.1002/adma.201902516
               droplet impact velocity and droplet volume: Key factors to
               achieving high cell viability in sub-nonoliter droplet-based   19.  Sodupe-Ortega E,  Sanz-Garcia A, Pernia-Espinoza A,  et  al.,
               bioprinting. Int J Bioprint, 8(1):424.             2018,  Accurate  calibration  in  multi-material  3D  bioprinting
                                                                  for tissue engineering. Materials (Basel), 11(8):1–19.
               https://doi.org/10.18063/IJB.V8I1.424
                                                                  https://doi.org/10.3390/ma11081402
            9.   Zhuang P, Ng WL, An J,  et al., 2019, Layer-by-layer
               ultraviolet assisted extrusion-based (UAE) bioprinting of   20.  Kolesky DB, Truby RL, Gladman AS,  et  al.,2014, 3D
               hydrogel constructs with high aspect ratio for soft tissue   bioprinting of vascularized, heterogeneous cell-laden tissue
               engineering applications. PLoS One, 14(6):e0216776.  constructs. Adv Mater, 26(19):3124–3130.
               https://doi.org/10.1371/journal.pone.0216776       https://doi.org/10.1002/adma.201305506
            10.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-  21.  Nadernezhad A, Khani N, Skvortsov G,  et al., 2016,
               based bioprinting-process, materials, applications and   Multifunctional 3D printing of heterogeneous hydrogel
               regulatory challenges. Biofabrication, 12(2):022001.  structures. Sci Rep, 6.
               https://doi.org/10.1088/1758-5090/ab6034           https://doi.org/10.1038/srep33178
            11.  Li W, Mille LS, Robledo JA, et al., 2020, Recent advances   22.  Liu  W,  Zhang  YS,  Heinrich  MA,  et al.,  2017,  Rapid
               in formulating and processing biomaterial inks for vat   continuous multimaterial extrusion bioprinting. Adv Mater,
               polymerization-based 3D printing.  Adv Healthc Mater,   29(3):1–8.
               9(15):e2000156.
                                                                  https://doi.org/10.1002/adma.201604630
               https://doi.org/10.1002/adhm.202000156
                                                               23.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
            12.  Ning L, Chen X, 2017, A brief review of extrusion-based   bioprinting of heterogeneous 3D tissue constructs using
               tissue scaffold bio-printing. Biotechnol J, 12(8).  low-viscosity bioink. Adv Mater, 28(4):677–684a.
               https://doi.org/10.1002/biot.201600671             https://doi.org/10.3390/MI11050459
            13.  Ozbolat IT, Hospodiuk M, 2016, Current advances and   24.  Wang  J, Zhang  N, Chen J,  et al., 2019,  Finding the
               future  perspectives  in extrusion-based bioprinting.   optimal design of a passive microfluidic mixer. Lab Chip,
               Biomaterials, 76:321–343.                          19(21):3618–3627.
               https://doi.org/10.1016/j.biomaterials.2015.10.076  https://doi.org/10.1039/c9lc00546c


            Volume 9 Issue 6 (2023)                         23                        https://doi.org/10.36922/ijb.0219
   26   27   28   29   30   31   32   33   34   35   36