Page 32 - IJB-9-6
P. 32
International Journal of Bioprinting CFD analysis for multimaterial bioprinting conditions
25. Ceballos-González CF, Bolívar-Monsalve EJ, Quevedo- https://doi.org/10.18869/acadpub.jafm.73.240.27314
Moreno DA, et al., 2021, High-throughput and continuous 36. Hobbs DM, Swanson PD, Muzzio FJ, 1998, Numerical
chaotic bioprinting of spatially controlled bacterial characterization of low Reynolds number flow in the Kenics
microcosms. ACS Biomater Sci Eng, 7(6):2408–2419.
static mixer. Chem Eng Sci, 53(8):1565–1584.
https://doi.org/10.1021/acsbiomaterials.0c01646
https://doi.org/10.1016/S0009-2509(97)00132-2
26. Li M, Tian X, Schreyer DJ, et al., 2011, Effect of needle 37. Nyande BW, Mathew Thomas K, Lakerveld R, 2021,
geometry on flow rate and cell damage in the dispensing-based CFD analysis of a Kenics static mixer with a low pressure
biofabrication process. Biotechnol Prog, 27(6):1777–1784. drop under laminar flow conditions. Ind Eng Chem Res,
https://doi.org/10.1002/btpr.679 60(14):5264–5277.
27. Andrew CD, Susan EC, Emily MR., et al., 2016, A comparison https://doi.org/10.1021/acs.iecr.1c00135
of different bioinks for 3D bioprinting of fibrocartilage and 38. Bird RB, 2007, Transport Phenomena Rev, 2nd ed, New
hyaline cartilage. Biofabrication, 8(4):45002. York, Wiley.
https://doi.org/10.1088/1758-5090/8/4/045002 39. Chhabra RP, Richardson JF, 2011, Chapter 1. Non-
28. Samandari M, Alipanah F, Majidzadeh AK, et al., Newtonian fluid behaviour, in Non-Newtonian Flow and
2021, Controlling cellular organization in bioprinting Applied Rheology: Engineering Applications, 536.
thrountalizationgh designed 3D microcompartme. Appl https://doi.org/10.1016/b978-075063770-1/50002-6
Phys Rev, 8(2).
40. Neofytou P, 2005, A 3rd order upwind finite volume method
https://doi.org/10.1063/5.0040732 for generalised Newtonian fluid flows. Adv Eng Softw,
29. Yu Y, Zhang Y, Martin JA, et al., 2013, Evaluation of cell 36(10):664–680.
viability and functionality in vessel-like bioprintable cell- https://doi.org/10.1016/j.advengsoft.2005.03.011
laden tubular channels. J Biomech Eng, 135(9):1–9.
41. Metzner AB, 1957, Non-Newtonian fluid flow relationships
https://doi.org/10.1115/1.4024575 between recent pressure-drop correlations. Ind Eng Chem,
30. Li M, Tian X, Zhu N, 2010, Modeling process-induced cell 49(9):1429–1432.
damagein the biodispensing process. Tissue Eng Part C: https://doi.org/10.1021/ie50573a049
Methods, 16(3):533–542.
42. Blaeser A, Million N, Campos DFD, et al., 2016, Laser-based
https://doi.org/10.1089=ten.tec.2009.0178533 in situ embedding of metal nanoparticles into bioextruded
31. Chiesa I, Ligorio C, Bonatti AF, et al., 2020, Modeling the alginate hydrogel tubes enhances human endothelial cell
three-dimensional bioprinting process of β-sheet self- adhesion. Nano Res, 9(11):3407–3427.
assembling peptide hydrogel scaffolds. Front Med Technol, https://doi.org/10.1007/s12274-016-1218-3
2:1–16.
43. Thompson JF, Soni BK, Weatherill NP, 1999, Handbook of
https://doi.org/10.3389/fmedt.2020.571626 Grid Generation, Boca Raton, FL, CRC Press.
32. Müller M, Öztürk E, Arlov Ø, et al., 2017, Alginate sulfate– https://doi.org/10.1201/9781420050349
nanocellulose bioinks for cartilage bioprinting applications.
Ann Biomed Eng, 45(1):210–223. 44. Thakur RK, Vial C, Nigam KDP, et al., 2003, Static mixers in
the process industries—A review, 81.
https://doi.org/10.1007/s10439-016-1704-5
https://doi.org/10.1205/026387603322302968
33. Serna JA, Florez SL, Talero VA, et al., 2019, Formulation and
characterization of a SIS-based photocrosslinkable bioink. 45. Rafeie M, Welleweerd M, Hassanzadeh-Barforoushi A, et
Polymers (Basel), 11(3):1–10. al., 2017, An easily fabricated three-dimensional threaded
lemniscate-shaped micromixer for a wide range of flow
https://doi.org/10.3390/polym11030569 rates. Biomicrofluidics, 11(1).
34. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D https://doi.org/10.1063/1.4974904
printing of gelatin methacrylamide cell-laden tissue- 46. Santana HS, Silva JL, Taranto OP, 2015, Numerical
engineered constructs with high cell viability. Biomaterials, simulation of mixing and reaction of Jatropha curcas oil and
35(1):49–62.
ethanol for synthesis of biodiesel in micromixers. Chem Eng
https://doi.org/10.1016/j.biomaterials.2013.09.078 Sci, 132:59–168.
35. Mahammedi A, Ameur H, Ariss A, et al., 2017, Numerical https://doi.org/10.1016/j.ces.2015.04.014
investigation of the performance of Kenics static mixers for 47. Zhang J, Luo X, 2018, Mixing performance of a 3D micro
the agitation of shear thinning fluids. J Appl Fluid Mech, T-mixer with swirl-inducing inlets and rectangular
10(3):989–999.
constriction. Micromachines, 9(5).
Volume 9 Issue 6 (2023) 24 https://doi.org/10.36922/ijb.0219

