Page 32 - IJB-9-6
P. 32

International Journal of Bioprinting                        CFD analysis for multimaterial bioprinting conditions



            25.  Ceballos-González CF, Bolívar-Monsalve EJ, Quevedo-  https://doi.org/10.18869/acadpub.jafm.73.240.27314
               Moreno DA, et al., 2021, High-throughput and continuous   36.  Hobbs DM, Swanson PD, Muzzio FJ, 1998, Numerical
               chaotic bioprinting of spatially controlled bacterial   characterization of low Reynolds number flow in the Kenics
               microcosms. ACS Biomater Sci Eng, 7(6):2408–2419.
                                                                  static mixer. Chem Eng Sci, 53(8):1565–1584.
               https://doi.org/10.1021/acsbiomaterials.0c01646
                                                                  https://doi.org/10.1016/S0009-2509(97)00132-2
            26.  Li M, Tian X, Schreyer DJ,  et al., 2011, Effect of needle   37.  Nyande BW, Mathew Thomas K, Lakerveld R, 2021,
               geometry on flow rate and cell damage in the dispensing-based   CFD analysis of a Kenics static mixer with a low pressure
               biofabrication process. Biotechnol Prog, 27(6):1777–1784.  drop under laminar flow conditions.  Ind Eng Chem Res,
               https://doi.org/10.1002/btpr.679                   60(14):5264–5277.
            27.  Andrew CD, Susan EC, Emily MR., et al., 2016, A comparison   https://doi.org/10.1021/acs.iecr.1c00135
               of different bioinks for 3D bioprinting of fibrocartilage and   38.  Bird RB, 2007, Transport Phenomena Rev, 2nd ed, New
               hyaline cartilage. Biofabrication, 8(4):45002.     York, Wiley.
               https://doi.org/10.1088/1758-5090/8/4/045002    39.  Chhabra RP, Richardson JF, 2011, Chapter 1. Non-
            28.  Samandari M, Alipanah F, Majidzadeh AK,  et al.,   Newtonian fluid behaviour, in  Non-Newtonian Flow and
               2021, Controlling cellular organization in bioprinting   Applied Rheology: Engineering Applications, 536.
               thrountalizationgh designed 3D microcompartme.  Appl   https://doi.org/10.1016/b978-075063770-1/50002-6
               Phys Rev, 8(2).
                                                               40.  Neofytou P, 2005, A 3rd order upwind finite volume method
               https://doi.org/10.1063/5.0040732                  for generalised Newtonian fluid  flows.  Adv Eng Softw,
            29.  Yu  Y,  Zhang  Y,  Martin  JA,  et al.,  2013,  Evaluation  of  cell   36(10):664–680.
               viability and  functionality in  vessel-like  bioprintable  cell-  https://doi.org/10.1016/j.advengsoft.2005.03.011
               laden tubular channels. J Biomech Eng, 135(9):1–9.
                                                               41.  Metzner AB, 1957, Non-Newtonian fluid flow relationships
               https://doi.org/10.1115/1.4024575                  between recent pressure-drop correlations. Ind Eng Chem,
            30.  Li M, Tian X, Zhu N, 2010, Modeling process-induced cell   49(9):1429–1432.
               damagein the biodispensing process.  Tissue  Eng  Part  C:   https://doi.org/10.1021/ie50573a049
               Methods, 16(3):533–542.
                                                               42.  Blaeser A, Million N, Campos DFD, et al., 2016, Laser-based
               https://doi.org/10.1089=ten.tec.2009.0178533       in situ embedding of metal nanoparticles into bioextruded
            31.  Chiesa I, Ligorio C, Bonatti AF, et al., 2020, Modeling the   alginate hydrogel tubes enhances human endothelial cell
               three-dimensional bioprinting process of β-sheet self-  adhesion. Nano Res, 9(11):3407–3427.
               assembling peptide hydrogel scaffolds. Front Med Technol,   https://doi.org/10.1007/s12274-016-1218-3
               2:1–16.
                                                               43.  Thompson JF, Soni BK, Weatherill NP, 1999, Handbook of
               https://doi.org/10.3389/fmedt.2020.571626          Grid Generation, Boca Raton, FL, CRC Press.
            32.  Müller M, Öztürk E, Arlov Ø, et al., 2017, Alginate sulfate–  https://doi.org/10.1201/9781420050349
               nanocellulose bioinks for cartilage bioprinting applications.
               Ann Biomed Eng, 45(1):210–223.                  44.  Thakur RK, Vial C, Nigam KDP, et al., 2003, Static mixers in
                                                                  the process industries—A review, 81.
               https://doi.org/10.1007/s10439-016-1704-5
                                                                  https://doi.org/10.1205/026387603322302968
            33.  Serna JA, Florez SL, Talero VA, et al., 2019, Formulation and
               characterization of a SIS-based photocrosslinkable bioink.   45.  Rafeie M, Welleweerd M, Hassanzadeh-Barforoushi A,  et
               Polymers (Basel), 11(3):1–10.                      al., 2017, An easily fabricated three-dimensional threaded
                                                                  lemniscate-shaped micromixer for a wide range of flow
               https://doi.org/10.3390/polym11030569              rates. Biomicrofluidics, 11(1).
            34.  Billiet T, Gevaert E, De Schryver T,  et al., 2014, The 3D   https://doi.org/10.1063/1.4974904
               printing of gelatin methacrylamide cell-laden tissue-  46.  Santana HS, Silva JL, Taranto OP, 2015, Numerical
               engineered constructs with high cell viability. Biomaterials,   simulation of mixing and reaction of Jatropha curcas oil and
               35(1):49–62.
                                                                  ethanol for synthesis of biodiesel in micromixers. Chem Eng
               https://doi.org/10.1016/j.biomaterials.2013.09.078  Sci, 132:59–168.
            35.  Mahammedi A, Ameur H, Ariss A, et al., 2017, Numerical   https://doi.org/10.1016/j.ces.2015.04.014
               investigation of the performance of Kenics static mixers for   47.  Zhang J, Luo X, 2018, Mixing performance of a 3D micro
               the agitation of shear thinning fluids.  J Appl Fluid Mech,   T-mixer with swirl-inducing inlets and rectangular
               10(3):989–999.
                                                                  constriction. Micromachines, 9(5).

            Volume 9 Issue 6 (2023)                         24                        https://doi.org/10.36922/ijb.0219
   27   28   29   30   31   32   33   34   35   36   37