Page 64 - IJB-9-6
P. 64
International Journal of Bioprinting Sub-regional design of the bionic bone scaffolds
47. Gibson LJ, Ashby MF, 1997, Cellular Solids: Structure and https://doi.org/10.1016/j.addma.2014.12.008
Properties, Cambridge University Press, Cambridge, 387– 51. Popovich A, Sufiiarov V, Borisov E, et al., 2015,
428.
Microstructure and mechanical properties of Ti-6Al-4V
48. Mullen L, Stamp RC, Brooks WK, et al., 2009, Selective laser manufactured by SLM. Key Eng Mater (Switzerland), 651–
melting: A regular unit cell approach for the manufacture 653: 677–682.
of porous, titanium, bone in-growth constructs, suitable https://doi.org/10.4028/www.scientific.net/KEM.651-
for orthopedic applications. J Biomed Mater Res Part B, 653.677
89B:325–334.
52. Sevilla P, Aparicio C, Planell JA, et al., 2007, Comparison
https://doi.org/10.1002/jbm.b.31219
of the mechanical properties between tantalum and nickel-
49. Craeghs T, Clijsters S, Yasa E, et al., 2011, Determination of titanium foams implant materials for bone ingrowth
geometrical factors in Layerwise laser melting using optical applications. J Alloy Compd, 439:67–73.
process monitoring. Opt Lasers Eng, 49:1440–1446.
https://doi.org/10.1016/j.jallcom.2006.08.069
https://doi.org/10.1016/j.optlaseng.2011.06.016
53. Morgan EF, Bayraktar HH, Keaveny TM, 2003, Trabecular
50. Wauthle R, Vrancken B, Beynaerts B, et al., 2015, Effects of bone modulus-density relationships depend on anatomic
build orientation and heat treatment on the microstructure site. J Biomech, 36:897–904.
and mechanical properties of selective laser melted Ti6Al4V https://doi.org/10.1016/s0021-9290(03)00071-x
lattice structures. Addit Manuf, 5:77–84.
Volume 9 Issue 6 (2023) 56 https://doi.org/10.36922/ijb.0222

