Page 105 - IJOCTA-15-2
P. 105

A. Ebrahimzadeh, R. Khanduzi, A. Jajarmi / IJOCTA, Vol.15, No.2, pp.294-310 (2025)
            where D (1)  = [d ij ] is the (N + 1) × (N + 1) oper-
            ational matrix of derivative given by:                T  (1)
                                                                 S D    ϕ(t) =
                                                                       T       T           T
                                 0,      i ≤ j,                  Λ − (U ϕ(t))(S ϕ(t)) − µ(S ϕ(t))
                                                                       1
                        d ij =                         (21)
                                 1,      i ≥ j.
                By utilizing equations (17) and (20), we ob-              T        T       T
            tain:                                                − (1 − U ϕ(t))β(S ϕ(t))(I ϕ(t))
                                                                          2
                                                                                           v
                      ′       T  ′      T  (1)
                     S (t) = S ϕ (t) = S D   ϕ(t),     (22)         β(S ϕ(t))(1 − U ϕ(t))(I ϕ(t))
                                                                                            T
                                                                                    T
                                                                       T
                                                                 −                 3       c      ,      (38)
                                                                                   T
                                                                            1 + α(I ϕ(t))
                                                                                   c
                       ′      T  ′       T  (1)
                     V (t) = V ϕ (t) = V D    ϕ(t),    (23)
                                                                   T
                                                                 V D  (1) ϕ(t) =
                      ′      T  ′      T  (1)
                     I (t) = I ϕ (t) = I D  ϕ(t),      (24)
                             c
                      c
                                       c
                                                                                            T
                                                                          T
                                                                                   T
                                                                 − (1 − U ϕ(t))β(I ϕ(t))(V ϕ(t))
                      ′      T  ′      T  (1)                             2        v
                     I (t) = I ϕ (t) = I D  ϕ(t),      (25)
                                       v
                             v
                      v
                                                                       T
                                                                                           T
                                                                                   T
                                                                 − µ(V ϕ(t)) + (U ϕ(t))(S ϕ(t)),         (39)
                                                                                  1
                       ′      T  ′      T   (1)
                     R (t) = R ϕ (t) = R D    ϕ(t),    (26)
                                                                  T
                                                                 I D (1) ϕ(t) =
                                                                  c
                              T
                     u 1 (t) = U ϕ(t),                 (27)
                              1
                                                                                               T
                                                                 − (µ + c c + ρw c + (1 − ρ)w c )(I ϕ(t))
                                                                                               c
                              T
                     u 2 (t) = U ϕ(t),                 (28)
                              2
                                                                                           T
                                                                                    T
                                                                           T
                                                                    β(1 − U ϕ(t))(S ϕ(t))I ϕ(t)
                                                                           3
                                                                                           c
                              T
                     u 3 (t) = U ϕ(t),                 (29)      +          1 + αI ϕ(t),        ,        (40)
                                                                                  T
                              3
                                                                                  c
            where the vectors S, V , I c , I v , R, U 1 , U 2 , and U 3
            are defined as follows:
                                                                  T
                                      T
                        S = [c 0 , . . . , c n ] ,     (30)      I D (1) ϕ(t) =
                                                                  v
                                            T
                                                                        T
                                                                                T
                                                                                         T
                        V = [c n+1 , . . . , c 2n+1 ] ,  (31)    β(1 − U ϕ(t))(I ϕ(t))(V ϕ(t))
                                                                                v
                                                                        2
                                             T
                        I c = [c 2n+2 , . . . , c 3n+2 ] ,  (32)           T       T       T
                                                                 + β(1 − U ϕ(t))(S ϕ(t))(I ϕ(t))
                                                                           2
                                                                                           v
                                             T
                        I v = [c 3n+3 , . . . , c 4n+3 ] ,  (33)
                                                                              T
                                                                                                    T
                                                                 + (1 − ρ)w c (I ϕ(t) − (µ + c v + w v )I ϕ(t),
                                                                              c                     v
                                                                                                         (41)
                                             T
                        R = [c 4n+4 , . . . , c 5n+4 ] ,  (34)
                                                                   T
                                                                  R D  (1) ϕ(t) =
                                              T
                        U 1 = [c 5n+5 , . . . , c 6n+5 ] ,  (35)
                                                                                               T
                                                                       T
                                                                                   T
                                                                  − µR ϕ(t) + w v I ϕ(t) + ρw c I ϕ(t).  (42)
                                                                                   v
                                                                                               c
                                              T
                        U 2 = [c 6n+6 , . . . , c 7n+6 ] ,  (36)
                                              T
                        U 3 = [c 7n+7 , . . . , c 8n+7 ] .  (37)
                Using equations (20) and (22)-(29), we sim-       Also, the initial conditions yield the following
            plify the system dynamics as follows:             five linear equations:
                                                           300
   100   101   102   103   104   105   106   107   108   109   110