Page 106 - IJOCTA-15-2
P. 106

Collocation method with flood-based metaheuristic optimizer for optimal control ...


                          T
                                            T
                  S(0) = S ϕ(0),   V (0) = V ϕ(0),                 T  Z  1  "      T(s + 1)   2
                                                                                T
                                                                 =        B 1 I ϕ(          )
                                                                                c
                                                                    4  −1              2
                                                                                    T(s + 1)   2
                          T
                                            T
                                                                                 T
                  I c (0) = I ϕ(0),  I v (0) = I ϕ(0),  (43)              + B 2 I ϕ(         )
                                           v
                          c
                                                                                 v
                                                                                         2
                                                                                     T(s + 1)   2
                                                                                  T
                                                                          + B 3 U ϕ(          )          (50)
                                                                                  1
                           T
                  R(0) = R ϕ(0).                                                         2
                                                                                               2
                                                                                      T(s + 1)
                                                                                  T
                                                                          + B 4 U ϕ(          )
                                                                                  2
                From (19), we obtain ϕ(0). Then, we select n                             2
                                                                                                  #
                        T(2i−1)                                                                2
            points τ i =       for i = 1, 2, . . . , n and substi-                T   T(s + 1)
                        2(n+1)                                            + B 5 U ϕ(          )    ds,
            tute them into the equations. This leads to:                          3      2
                                                                  which further simplifies to:
                T
                                                                     N
              S D  (1) ϕ(τ j ) =                                  T  X    "         T(s j + 1)   2
                                                                                 T
                                                               =        w j B 1 I ϕ
                                                                                 c
                     T
                              T
                                            T
              Λ − (U ϕ(τ j ))(S ϕ(τ j )) − µ(S ϕ(τ j ))           4  i=1                  2
                     1
                                  T
                       T
                                           T
               − (1 − U ϕ(τ j ))β(S ϕ(τ j ))(I ϕ(τ j ))                              T(s j + 1)   2
                       2
                                           v
                                                                                  T
                                                                           + B 2 I ϕ
                                                                                  v
                                           T
                                  T
                     T
                 β(S ϕ(τ j ))(1 − U ϕ(τ j ))(I ϕ(τ j ))                                    2
                                           c
               −                  3               ,    (44)                                     2
                                  T
                          1 + α(I ϕ(τ j ))                                 + B 3 U ϕ    T(s j + 1)       (51)
                                 c
                                                                                   T
                T
              V D  (1) ϕ(τ j ) =                                                   1        2
                                                                                                2
                     T
                                          T
                                 T
               − µ(V ϕ(τ j )) + (U ϕ(τ j ))(S ϕ(τ j )),  (45)              + B 4 U ϕ    T(s j + 1)
                                                                                   T
                                 1
                                                                                   2
               T
              I D (1) ϕ(τ j ) =                                                             2         #
               c


                                                                                        T(s j + 1)   2
                                            T
                                                                                   T
               − (µ + c c + ρw c + (1 − ρ)w c )(I ϕ(τ j ))                 + B 5 U ϕ                   .
                                                                                   3
                                            c
                                                                                            2
                                          T
                                  T
                         T
                 β(1 − U ϕ(τ j ))(S ϕ(τ j ))I ϕ(τ j )
                                          c
               +         3                       ,     (46)       In the interval [−1, 1], the nodes s j are zeros of
                                T
                          1 + αI ϕ(τ j ),
                                c
                                                              Legendre polynomials P N (t). The following equa-
               T
              I D (1) ϕ(τ j ) =                               tion can be utilized to determine the associated
               v
                      T
                                        T
                               T
              β(1 − U ϕ(τ j ))(I ϕ(τ j ))(V ϕ(τ j ))          weights w j for j = 0, 1, . . . , N:
                      2
                               v
                                  T
                                           T
                         T
               + β(1 − U ϕ(τ j ))(S ϕ(τ j ))(I ϕ(τ j ))                                2
                                           v
                        2
                                                                          w j =      2   ′      .        (52)
                                                   T
                            T
               + (1 − ρ)w c (I ϕ(τ j ) − (µ + c v + w v )I ϕ(τ j ),             (1 − s )[P (s j )] 2
                                                                                         N
                                                                                     j
                            c
                                                  v
                                                       (47)       The original OCP is transformed into an NLP,
                T
              R D  (1) ϕ(τ j ) =                              where (51) serves as the objective function, and
                                                              equations (44)–(48) are treated as constraints.
                                T
                                              T
                    T
               − µR ϕ(τ j ) + w v I ϕ(τ j ) + ρw c I ϕ(τ j ).  (48)  The FBMO for solving NLPs is explained in Sec-
                                v
                                              c
                                                              tion 3.2, which can be employed to solve this NLP.
                By substituting equations (22)-(29) into (11),  3.2. Proposed flood-based metaheuristic
            we obtain:                                             optimizer (FBMO)
                                                              This subsection comprehensively discusses the
                                                              concepts of a new nature-inspired optimizer, re-
                 J(U 1 , U 2 , U 3 ) =                        leased in 2024, based on the flooding phenome-
                   Z  T
                  1         T     2       T     2            non, i.e., FBMO. The FBMO is a new metaheuris-
                        B 1 (I ϕ(t)) + B 2 (I ϕ(t))
                                           v
                             c
                  2  0                                 (49)   tic algorithm that simulates the ruinous and in-
                                                              cursive food phenomenon in watersheds. The sci-
                          T
                                         T
                  + B 3 U ϕ(t)  2  + B 4 U ϕ(t)  2          entific concepts of the flooding phenomenon were
                          1
                                         2
                                 i                                                                         27
                                2
                         T

                  +B 5 U ϕ(t)     dt,                         used to model the mathematics behind FBMO.
                         3
                                                              FBMO operates in two stages, as follows:
                                                                 (1) Step 1 (Regular Movement): This step in-
                which simplifies to:                                 volves population search in the NLP into
                                                           301
   101   102   103   104   105   106   107   108   109   110   111