Page 74 - IJOCTA-15-3
P. 74
M. A. Touat / IJOCTA, Vol.15, No.3, pp.435-448 (2025)
4. Fajrianto MR, Wahyudi W, Sudjadi S. Peran- 19. Meghwal R, Yadav VK, Vardia M. Robust
cangan kontroler fuzzy model reference learning fuzzy controller design with FPGA implementa-
control (fmrlc) berbasis mikrokontroler atmega16 tion for matrix converter based induction motor
sebagai kendali motor brushless dc (bldc). Tran- drive. e-Prime Adv Elect Eng Electron Energy
sient: J Ilmiah Teknik Elektro2017;6:597–604. 2024;10:100752.
5. Saim A, Haoping W, Yang T. Fault tolerant con- 20. El Attafi A, El Alami H, Bossoufi B, et al. Ro-
trol using fractional-order terminal sliding mode bust control of a wind energy conversion system:
control for robotic manipulators. Stud. Inform. FPGA real-time implementation. Heliyon. 2024;
Control. 2018;27(1):55-64. 10(15):e35712.
6. Saim A, Ahmad Taher A, Ibraheem KI. Nonlinear 21. Chakravarty S. Technology and Engineering Ap-
system controlled using novel adaptive fixed-time plications of Simulink. BoD–Books on Demand;
SMC. AIMS Math 2024;9(4):7895-7916. 2012.
¨
7. Kopasakis G, Kopasakis G. Adaptive perfor- 22. Akkaya S¸, Uzg¨un HD, Akbati O. Fuzzy logic con-
mance seeking control using fuzzy model refer- troller implementation with fpga in the loop sim-
ence learning control and positive gradient con- ulation. In: Proceedings of the 2017 International
trol. In: 33rd Joint Propulsion Conference and Conference on Mechatronics Systems and Control
Exhibit; 1997: 3191. Engineering ; 2017: 33-37.
¨
8. Zhen L, Xu L. Fuzzy learning enhanced speed 23. Akbatı O, Uzg¨un HD, Akkaya S. Hardware-
control of an indirect field-oriented induction ma- in-the-loop simulation and implementation of a
chine drive. IEEE Trans Control syst Technol. fuzzy logic controller with fpga: case study of a
2000;8:270–278. magnetic levitation system. Trans Instit Measure
9. Mayhan P, Washington G. Fuzzy model refer- Control., 2019;41:2150-2159.
ence learning control: a new control paradigm for 24. Deliparaschos K, Nenedakis F, Tzafestas SG. De-
smart structures. Smart Mater struct. 1998;7:874. sign and implementation of a fast digital fuzzy
10. Layne JR, Passino KM, Yurkovich S. Fuzzy learn- logic controller using fpga technology. J Intell Ro-
ing control for antiskid braking systems. IEEE bot Syst., 2006;45:77-96.
Trans Control Syst Technol. 1993;1:122–129. 25. Khati H, Mellah R, Talem H. Neuro-fuzzy control
11. Reay D, Dunnigan M. Learning issues in model of a position-position teleoperation system using
reference based fuzzy control. IEEE Proc Control fpga, In: 2019 24th International Conference on
Theor Appl., 1997;144:605–611. Methods and Models in Automation and Robotics
12. Duka AV, Oltean SE, Dulau M. Model reference (MMAR). IEEE; 2019:64-69.
adaptive control and fuzzy model reference learn- 26. Khati H, Talem H, Mellah R, Bilek A. Neuro-
ing control for the inverted pendulum. compara- fuzzy control of bilateral teleoperation system us-
tive analysis. In: Proceedings of WSEAS Inter- ing fpga. Iranian J Fuzzy Syst. 2019;16:17-32.
national Conference on Dynamical Systems and 27. Azzouz B, Hadjira B. Hardware/software code-
Control; 2005:168–173. sign for intel ligent motor drive on an fpga, In:
13. Monmasson E, Idkhajine L, Cirstea MN, Bahri 2020 2nd International Workshop on Human-
I, Tisan A, Naouar MW. Fpgas in industrial Centric Smart Environments for Health and
control applications. IEEE Trans Ind Informat Well-being (IHSH). IEEE; 2021; 227-232.
2011;7:224-243. 28. Lotfy A, Kaveh M, Mosavi M, Rahmati A. An en-
14. Hace A, Franc M. Fpga implementation of hanced fuzzy controller based on improved genetic
sliding-mode control algorithm for scaled bilat- algorithm for speed control of dc motors. Analog
eral teleoperation. IEEE Transac Ind Inform. Integr Circ Signal Process. 2020;105:141-155.
2012;9:1291–1300. 29. Abdelkrim H, Othman SB, Saoud SB. Fpga im-
15. Fekik A, Khati H, Azar AT, et al. FPGA in plementation of self-reconfigurable fuzzy logic
the loop implementation of the PUMA 560 ro- controller. In: 2018 International Conference on
bot based on backstepping control. IET Control Advanced Systems and Electric Technologies(IC
Theor Appl. 2024;18(15): 1877-1891. ASET). IEEE; 2018:151-156.
16. Huerta-Moro S, Taviz´on-Aldama JD, Tlelo- 30. Moussa I, Khedher A. Real-time wte using flc
Cuautle E. FPGA implementation of sliding mode implementation on fpga board: theoretical and
control and proportional-integral-derivative con- experimental studies. In: 2020 17th Interna-
trollers for a DC–DC buck converter. Technol. tional Multi-Conference on Systems, Signals &
2024;12(10):184. Devices(SSD). IEEE; 2020: 428-433.
17. Wang J, Li M, Jiang W, Huang Y, Lin R. A design 31. Anand, M.S., Tyagi, B. (2012). Design and im-
of FPGA-based neural network PID controller for plementation of fuzzy controller on fpga. Int J
motion control system. Sens. 2022;22(3):889. Intell Syst Applicat. 2012; 10:35-42.
18. Li Y, Li SE, Jia X, Zeng S, Wang Y. FPGA accel- 32. Layne JR, Passino KM. Fuzzy model reference
erated model predictive control for autonomous learning control. J Intell Fuzzy Syst. 1996;4:33–47.
driving. J Intell Connect Vehicl. 2022;5(2):63- 33. Ljung L. System Identification Tool-box: User’s
71 Guide. Citeseer; 1995.
446

