Page 74 - IJOCTA-15-3
P. 74

M. A. Touat / IJOCTA, Vol.15, No.3, pp.435-448 (2025)

              4. Fajrianto MR, Wahyudi W, Sudjadi S. Peran-   19. Meghwal R, Yadav VK, Vardia M. Robust
                cangan kontroler fuzzy model reference learning   fuzzy controller design with FPGA implementa-
                control (fmrlc) berbasis mikrokontroler atmega16  tion for matrix converter based induction motor
                sebagai kendali motor brushless dc (bldc). Tran-  drive. e-Prime Adv Elect Eng Electron Energy
                sient: J Ilmiah Teknik Elektro2017;6:597–604.     2024;10:100752.
              5. Saim A, Haoping W, Yang T. Fault tolerant con-  20. El Attafi A, El Alami H, Bossoufi B, et al. Ro-
                trol using fractional-order terminal sliding mode  bust control of a wind energy conversion system:
                control for robotic manipulators. Stud. Inform.   FPGA real-time implementation. Heliyon. 2024;
                Control. 2018;27(1):55-64.                        10(15):e35712.
              6. Saim A, Ahmad Taher A, Ibraheem KI. Nonlinear  21. Chakravarty S. Technology and Engineering Ap-
                system controlled using novel adaptive fixed-time  plications of Simulink. BoD–Books on Demand;
                SMC. AIMS Math 2024;9(4):7895-7916.               2012.
                                                                            ¨
              7. Kopasakis G, Kopasakis G. Adaptive perfor-   22. Akkaya S¸, Uzg¨un HD, Akbati O. Fuzzy logic con-
                mance seeking control using fuzzy model refer-    troller implementation with fpga in the loop sim-
                ence learning control and positive gradient con-  ulation. In: Proceedings of the 2017 International
                trol. In: 33rd Joint Propulsion Conference and    Conference on Mechatronics Systems and Control
                Exhibit; 1997: 3191.                              Engineering ; 2017: 33-37.
                                                                             ¨
              8. Zhen L, Xu L. Fuzzy learning enhanced speed  23. Akbatı O, Uzg¨un HD, Akkaya S. Hardware-
                control of an indirect field-oriented induction ma-  in-the-loop simulation and implementation of a
                chine drive. IEEE Trans Control syst Technol.     fuzzy logic controller with fpga: case study of a
                2000;8:270–278.                                   magnetic levitation system. Trans Instit Measure
              9. Mayhan P, Washington G. Fuzzy model refer-       Control., 2019;41:2150-2159.
                ence learning control: a new control paradigm for  24. Deliparaschos K, Nenedakis F, Tzafestas SG. De-
                smart structures. Smart Mater struct. 1998;7:874.  sign and implementation of a fast digital fuzzy
             10. Layne JR, Passino KM, Yurkovich S. Fuzzy learn-  logic controller using fpga technology. J Intell Ro-
                ing control for antiskid braking systems. IEEE    bot Syst., 2006;45:77-96.
                Trans Control Syst Technol. 1993;1:122–129.   25. Khati H, Mellah R, Talem H. Neuro-fuzzy control
             11. Reay D, Dunnigan M. Learning issues in model     of a position-position teleoperation system using
                reference based fuzzy control. IEEE Proc Control  fpga, In: 2019 24th International Conference on
                Theor Appl., 1997;144:605–611.                    Methods and Models in Automation and Robotics
             12. Duka AV, Oltean SE, Dulau M. Model reference     (MMAR). IEEE; 2019:64-69.
                adaptive control and fuzzy model reference learn-  26. Khati H, Talem H, Mellah R, Bilek A. Neuro-
                ing control for the inverted pendulum. compara-   fuzzy control of bilateral teleoperation system us-
                tive analysis. In: Proceedings of WSEAS Inter-    ing fpga. Iranian J Fuzzy Syst. 2019;16:17-32.
                national Conference on Dynamical Systems and  27. Azzouz B, Hadjira B. Hardware/software code-
                Control; 2005:168–173.                            sign for intel ligent motor drive on an fpga, In:
             13. Monmasson E, Idkhajine L, Cirstea MN, Bahri      2020 2nd International Workshop on Human-
                I, Tisan A, Naouar MW. Fpgas in industrial        Centric Smart Environments for Health and
                control applications. IEEE Trans Ind Informat     Well-being (IHSH). IEEE; 2021; 227-232.
                2011;7:224-243.                               28. Lotfy A, Kaveh M, Mosavi M, Rahmati A. An en-
             14. Hace A, Franc M. Fpga implementation of          hanced fuzzy controller based on improved genetic
                sliding-mode control algorithm for scaled bilat-  algorithm for speed control of dc motors. Analog
                eral teleoperation. IEEE Transac Ind Inform.      Integr Circ Signal Process. 2020;105:141-155.
                2012;9:1291–1300.                             29. Abdelkrim H, Othman SB, Saoud SB. Fpga im-
             15. Fekik A, Khati H, Azar AT, et al. FPGA in        plementation of self-reconfigurable fuzzy logic
                the loop implementation of the PUMA 560 ro-       controller. In: 2018 International Conference on
                bot based on backstepping control. IET Control    Advanced Systems and Electric Technologies(IC
                Theor Appl. 2024;18(15): 1877-1891.               ASET). IEEE; 2018:151-156.
             16. Huerta-Moro S, Taviz´on-Aldama JD, Tlelo-    30. Moussa I, Khedher A. Real-time wte using flc
                Cuautle E. FPGA implementation of sliding mode    implementation on fpga board: theoretical and
                control and proportional-integral-derivative con-  experimental studies. In:  2020 17th Interna-
                trollers for a DC–DC buck converter. Technol.     tional Multi-Conference on Systems, Signals &
                2024;12(10):184.                                  Devices(SSD). IEEE; 2020: 428-433.
             17. Wang J, Li M, Jiang W, Huang Y, Lin R. A design  31. Anand, M.S., Tyagi, B. (2012). Design and im-
                of FPGA-based neural network PID controller for   plementation of fuzzy controller on fpga. Int J
                motion control system. Sens. 2022;22(3):889.      Intell Syst Applicat. 2012; 10:35-42.
             18. Li Y, Li SE, Jia X, Zeng S, Wang Y. FPGA accel-  32. Layne JR, Passino KM. Fuzzy model reference
                erated model predictive control for autonomous    learning control. J Intell Fuzzy Syst. 1996;4:33–47.
                driving. J Intell Connect Vehicl. 2022;5(2):63-  33. Ljung L. System Identification Tool-box: User’s
                71                                                Guide. Citeseer; 1995.

                                                           446
   69   70   71   72   73   74   75   76   77   78   79