Page 41 - MSAM-2-1
P. 41

Materials Science in Additive Manufacturing                             3D-printed nozzle for 3D bioprinting



            13.  Wang Y, Wang J, Ji Z, et al., 2022, Application of bioprinting      https://doi.org/10.18063/msam.v1i1.7
               in ophthalmology. Int J Bioprint, 8: 552.
                                                               22.  Abdelrahman S, Alsanie WF, Khan ZN,  et  al., 2022, A
               https://doi.org/10.18063/ijb.v8i2.552              Parkinson’s disease model composed of 3D bioprinted
                                                                  dopaminergic neurons within a biomimetic peptide scaffold.
            14.  Ozbolat IT, Hospodiuk M, 2016, Current advances and future
               perspectives in extrusion-based bioprinting.  Biomaterials,   Biofabrication, 14: 044103.
               76: 321–343.                                       https://doi.org/10.1088/1758-5090/ac7eec
               https://doi.org/10.1016/j.biomaterials.2015.10.076  23.  Skylar-Scott MA, Mueller J, Visser CW,  et al., 2019,
                                                                  Voxelated soft matter via multimaterial multinozzle 3D
            15.  Xing J, Luo X, Bermudez J, et al., 2017, 3D Bioprinting of
               Scaffold Structure using Micro-Extrusion Technology.   printing. Nature, 575: 330–335.
               In: The Annual International Solid Freeform Fabrication      https://doi.org/10.1038/s41586-019-1736-8
               Symposium, Austin.
                                                               24.  Alrashoudi AA, Albalawi HI, Aldoukhi AH,  et al., 2021,
               https://doi.org/10.26153/16943                     Fabrication of a lateral flow assay for rapid in-field detection
                                                                  of COVID-19 antibodies using additive manufacturing
            16.  De León EH, Valle-Pérez AU, Khan ZN,  et al., 2023,   printing technologies. Int J Bioprint, 7: 399.
               Intelligent and smart biomaterials for sustainable 3D
               printing applications. Curr Opin Biomed Eng, 26: 100450.      https://doi.org/10.18063/ijb.v7i4.399
               https://doi.org/10.1016/j.cobme.2023.100450     25.  Khan Z, Kahin K, Rauf S, et al., 2018, Optimization of a 3D
                                                                  bioprinting process using ultrashort peptide bioinks. Int J
            17.  Pradeep PV, Paul L, 2022, Review on novel biomaterials   Bioprint, 5: 173.
               and innovative 3D printing techniques in biomedical
               applications. Mater Today Proc., 58: 96–103.       https://doi.org/10.18063/ijb.v5i1.173
               https://doi.org/10.1016/j.matpr.2022.01.072     26.  Susapto HH, Alhattab D, Abdelrahman S,  et al., 2021,
                                                                  Ultrashort peptide bioinks support automated printing of
            18.  Xu H, Su Y, Liao Z, et al., 2022, Coaxial bioprinting vascular   large-scale constructs assuring long-term survival of printed
               constructs: A review. Eur Polym J, 179: 111549.
                                                                  tissue constructs. Nano Lett, 21: 2719–2729.
               https://doi.org/10.1016/j.eurpolymj.2022.111549
                                                                  https://doi.org/10.1021/acs.nanolett.0c04426
            19.  Morgan FL, Moroni L, Baker MB, 2020, Dynamic bioinks to   27.  Kahin K, Khan Z, Albagami M, et al., 2019, Development of a
               advance bioprinting. Adv Healthc Mater, 9: 1901798.
                                                                  robotic 3D bioprinting and microfluidic pumping system for
               https://doi.org/10.1002/adhm.201901798             tissue and organ engineering. In: Gray BL, Becker H, editors.
                                                                  Microfluidics, BioMEMS, and Medical Microsystems XVII.
            20.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
               bioprinting of heterogeneous 3D tissue constructs using   25 (SPIE, 2019).
               low-viscosity bioink. Adv Mater, 28: 677–684.      https://doi.org/10.1117/12.2507237
               https://doi.org/10.1002/adma.201503310          28.  Khan Z, Kahin K, Hauser C, 2021, Time-dependent pulsing
                                                                  of microfluidic pumps to enhance 3D bioprinting of peptide
            21.  Khan ZN, Albalawi HI, Valle-Pérez AU, et al., 2022, From
               3D printed molds to bioprinted scaffolds: A hybrid material   bioinks.  In:  Gray  BL,  Becker  H,  editors.  Microfluidics,
               extrusion and vat polymerization bioprinting approach for   BioMEMS, and Medical Microsystems XIX, 5 (SPIE, 2021).
               soft matter constructs. Mater Sci Addit Manuf, 1: 7.      https://doi.org/10.1117/12.2578830
























            Volume 2 Issue 1 (2023)                         9                        https://doi.org/10.36922/msam.52
   36   37   38   39   40   41   42   43   44   45   46