Page 49 - TD-2-1
P. 49

Tumor Discovery                                                         Breast cancer optical differentiation



               diagnosis. Opt Quantum Electron, 54(5): 322.       Biomedical Diagnostics. United States: CRC Press.
               https://doi.org/10.1007/s11082-022-03658-z      52.  DiPerna RJ, Lions PL, 1989, Ordinary differential
                                                                  equations, transport theory and Sobolev spaces.  Invent
            40.  Aref MH, Sharawi AA, El-Sharkawy YH, 2021, Delineation of
               the arm blood vessels utilizing hyperspectral imaging to assist   Math, 98(3): 511–547.
               with phlebotomy for exploiting the cutaneous tissue oxygen      https://doi.org/10.1007/BF01393835
               concentration. Photodiagnosis Photodyn Ther, 33: 102190.
                                                               53.  Rinzema K, Murrer LH, Star WM, 1998, Direct experimental
               https://doi.org/10.1016/j.pdpdt.2021.102190        verification of light transport theory in an optical phantom.
                                                                  J Opt Soc Am A, 15(8): 2078–2088.
            41.  Aref M, Youssef AB, Hussein AA,  et al., 2021, Custom
               fluorescence imaging system exploiting hyperspectral   54.  Yavari N, 2006, Optical spectroscopy for tissue diagnostics
               camera to characterize and diagnose RNA breast cancer.   and treatment control. Transport, 760: 141–157.
               Biointerface Res Appl Chem, 2: 5548–5566.
                                                                  https://doi.org/10.1007/978-1-61779-176-5
            42.  Aref MH, Abbass MA, Youssef AB,  et al., 2022, Optical   55.  Xie D, Guo W, 2020, Measurement and calculation methods
               Characterization of Biological Tissues in Visible and Near-  on absorption and scattering properties of turbid food in
                                     th
               Infrared Spectra. In: 2022 13  International Conference on   Vis/NIR range. Food Bioprocess Technol, 13(2): 229–244.
               Electrical Engineering (ICEENG). IEEE. p. 159–163.
                                                                  https://doi.org/10.1007/s11947-020-02402-3
            43.  Aboughaleb IH, Matboli M, Shawky SM,  et al., 2021,
               Transcriptome spectral analysis using hyperspectral   56.  Noor SS, Michael K, Marshall S, et al., 2017, Hyperspectral
               imaging for hepatocellular carcinoma detection. QJM Int J   image enhancement and mixture deep-learning classification
               Med, 114(Suppl 1): hcab088-004.                    of corneal epithelium injuries. Sensors, 17(11): 2644.
            44.  Bashkatov AN, Genina EA, Kochubey VI, et al., 2005, Optical      https://doi.org/10.3390/s17112644
               properties of human skin, subcutaneous and mucous tissues   57.  Palmer GM, Ramanujam N, 2006, Monte Carlo-based
               in the wavelength range from 400 to 2000 nm. J Phys D Appl   inverse model for calculating tissue optical properties.
               Phys, 38(15): 2543–2555.                           Part I: Theory and validation on synthetic phantoms. Appl
               https://doi.org/10.1088/0022-3727/38/15/004        Opt, 45(5): 1062–1071.
            45.  Ostantini IR, Icchi RI, Ilvestri LU, et al., 2019, In-vivo and   58.  Alexandrakis G, Farrell TJ, Patterson MS, 1998, Accuracy
               ex-vivo  optical clearing methods for biological tissues :   of the diffusion approximation in determining the optical
               Review. Biomed Opt Express, 10(10): 5251–5267.     properties of a two-layer turbid medium. Appl Opt, 37(31):
                                                                  7401–7409.
               https://doi.org/10.1364/BOE.10.005251
                                                                  https://doi.org/10.1364/ao.37.007401
            46.  Tuchin VV, 1997, Light scattering study of tissues.  Phys
               Uspekhi, 40(5): 495–515.                        59.  Prahl SA, van Gemert MJ, Welch AJ, 1993, Determining
                                                                  the optical properties of turbid media by using the adding-
               https://doi.org/10.1070/pu1997v040n05abeh000236
                                                                  doubling method. Appl Opt, 32(4): 559–568.
            47.  Aref MH, Youssef AB, Aboughaleb IH,  et al., 2021,   60.  Wan S, Anderson RR, Parrish JA, 1981, Analytical modeling
               Characterization of normal and malignant breast tissues   for the optical properties of the skin with in vitro and in vivo
               utilizing hyperspectral images and associated differential   applications. Photochem Photobiol, 34(4): 493–499.
               spectrum algorithm. J Biomed Photon Eng, 7(2): 1–12.
                                                               61.  Hourdakis CJ, Perris A, 1995, A monte carlo estimation of
               https://doi.org/10.18287/JBPE21.07.020302
                                                                  tissue optical properties for use in laser dosimetry. Phys Med
            48.  Fajardo C, Solarte E, 2020, Optical properties of a simple   Biol, 40(3): 351–364.
               model of soft biological tissue. J Phys Conf Ser, 1547: 012026.
                                                                  https://doi.org/10.1088/0031-9155/40/3/002
               https://doi.org/10.1088/1742-6596/1547/1/012026
                                                               62.  Jacques SL, Wang L, 1995, Monte Carlo modeling of light
            49.  Pogue BW, Patterson MS, 2022, Review of tissue simulating   transport in tissues. In: Optical-Thermal Response of Laser-
               phantoms for optical spectroscopy, imaging and dosimetry.   Irradiated Tissue. Berlin: Springer. p. 73–100.
               J Biomed Opt, 11: 041102.
                                                               63.  Peng L, Chen W, Zhou W, et al., 2016, An immune-inspired
               https://doi.org/10.1117/1.2335429                  semi-supervised algorithm for breast cancer diagnosis.
                                                                  Comput Methods Programs Biomed, 134: 259–265.
            50.  Patterson MS, Wilson BC, Wyman DR, 1991, The
               propagation of  optical  radiation  in Tissue  I.  Models  of      https://doi.org/10.1016/j.cmpb.2016.07.020
               radiation transport and their application. Lasers Med Sci,   64.  Hossain S, Mohammadi FA, 2016, Tumor parameter
               6: 155–168.
                                                                  estimation considering the body geometry by thermography.
            51.  Vo-Dinh T, 2014,  Biomedical Photonics Handbook:   Comput Biol Med, 76: 80–93.


            Volume 2 Issue 1 (2023)                         14                          https://doi.org/10.36922/td.258
   44   45   46   47   48   49   50   51   52   53   54