Page 49 - TD-2-1
P. 49
Tumor Discovery Breast cancer optical differentiation
diagnosis. Opt Quantum Electron, 54(5): 322. Biomedical Diagnostics. United States: CRC Press.
https://doi.org/10.1007/s11082-022-03658-z 52. DiPerna RJ, Lions PL, 1989, Ordinary differential
equations, transport theory and Sobolev spaces. Invent
40. Aref MH, Sharawi AA, El-Sharkawy YH, 2021, Delineation of
the arm blood vessels utilizing hyperspectral imaging to assist Math, 98(3): 511–547.
with phlebotomy for exploiting the cutaneous tissue oxygen https://doi.org/10.1007/BF01393835
concentration. Photodiagnosis Photodyn Ther, 33: 102190.
53. Rinzema K, Murrer LH, Star WM, 1998, Direct experimental
https://doi.org/10.1016/j.pdpdt.2021.102190 verification of light transport theory in an optical phantom.
J Opt Soc Am A, 15(8): 2078–2088.
41. Aref M, Youssef AB, Hussein AA, et al., 2021, Custom
fluorescence imaging system exploiting hyperspectral 54. Yavari N, 2006, Optical spectroscopy for tissue diagnostics
camera to characterize and diagnose RNA breast cancer. and treatment control. Transport, 760: 141–157.
Biointerface Res Appl Chem, 2: 5548–5566.
https://doi.org/10.1007/978-1-61779-176-5
42. Aref MH, Abbass MA, Youssef AB, et al., 2022, Optical 55. Xie D, Guo W, 2020, Measurement and calculation methods
Characterization of Biological Tissues in Visible and Near- on absorption and scattering properties of turbid food in
th
Infrared Spectra. In: 2022 13 International Conference on Vis/NIR range. Food Bioprocess Technol, 13(2): 229–244.
Electrical Engineering (ICEENG). IEEE. p. 159–163.
https://doi.org/10.1007/s11947-020-02402-3
43. Aboughaleb IH, Matboli M, Shawky SM, et al., 2021,
Transcriptome spectral analysis using hyperspectral 56. Noor SS, Michael K, Marshall S, et al., 2017, Hyperspectral
imaging for hepatocellular carcinoma detection. QJM Int J image enhancement and mixture deep-learning classification
Med, 114(Suppl 1): hcab088-004. of corneal epithelium injuries. Sensors, 17(11): 2644.
44. Bashkatov AN, Genina EA, Kochubey VI, et al., 2005, Optical https://doi.org/10.3390/s17112644
properties of human skin, subcutaneous and mucous tissues 57. Palmer GM, Ramanujam N, 2006, Monte Carlo-based
in the wavelength range from 400 to 2000 nm. J Phys D Appl inverse model for calculating tissue optical properties.
Phys, 38(15): 2543–2555. Part I: Theory and validation on synthetic phantoms. Appl
https://doi.org/10.1088/0022-3727/38/15/004 Opt, 45(5): 1062–1071.
45. Ostantini IR, Icchi RI, Ilvestri LU, et al., 2019, In-vivo and 58. Alexandrakis G, Farrell TJ, Patterson MS, 1998, Accuracy
ex-vivo optical clearing methods for biological tissues : of the diffusion approximation in determining the optical
Review. Biomed Opt Express, 10(10): 5251–5267. properties of a two-layer turbid medium. Appl Opt, 37(31):
7401–7409.
https://doi.org/10.1364/BOE.10.005251
https://doi.org/10.1364/ao.37.007401
46. Tuchin VV, 1997, Light scattering study of tissues. Phys
Uspekhi, 40(5): 495–515. 59. Prahl SA, van Gemert MJ, Welch AJ, 1993, Determining
the optical properties of turbid media by using the adding-
https://doi.org/10.1070/pu1997v040n05abeh000236
doubling method. Appl Opt, 32(4): 559–568.
47. Aref MH, Youssef AB, Aboughaleb IH, et al., 2021, 60. Wan S, Anderson RR, Parrish JA, 1981, Analytical modeling
Characterization of normal and malignant breast tissues for the optical properties of the skin with in vitro and in vivo
utilizing hyperspectral images and associated differential applications. Photochem Photobiol, 34(4): 493–499.
spectrum algorithm. J Biomed Photon Eng, 7(2): 1–12.
61. Hourdakis CJ, Perris A, 1995, A monte carlo estimation of
https://doi.org/10.18287/JBPE21.07.020302
tissue optical properties for use in laser dosimetry. Phys Med
48. Fajardo C, Solarte E, 2020, Optical properties of a simple Biol, 40(3): 351–364.
model of soft biological tissue. J Phys Conf Ser, 1547: 012026.
https://doi.org/10.1088/0031-9155/40/3/002
https://doi.org/10.1088/1742-6596/1547/1/012026
62. Jacques SL, Wang L, 1995, Monte Carlo modeling of light
49. Pogue BW, Patterson MS, 2022, Review of tissue simulating transport in tissues. In: Optical-Thermal Response of Laser-
phantoms for optical spectroscopy, imaging and dosimetry. Irradiated Tissue. Berlin: Springer. p. 73–100.
J Biomed Opt, 11: 041102.
63. Peng L, Chen W, Zhou W, et al., 2016, An immune-inspired
https://doi.org/10.1117/1.2335429 semi-supervised algorithm for breast cancer diagnosis.
Comput Methods Programs Biomed, 134: 259–265.
50. Patterson MS, Wilson BC, Wyman DR, 1991, The
propagation of optical radiation in Tissue I. Models of https://doi.org/10.1016/j.cmpb.2016.07.020
radiation transport and their application. Lasers Med Sci, 64. Hossain S, Mohammadi FA, 2016, Tumor parameter
6: 155–168.
estimation considering the body geometry by thermography.
51. Vo-Dinh T, 2014, Biomedical Photonics Handbook: Comput Biol Med, 76: 80–93.
Volume 2 Issue 1 (2023) 14 https://doi.org/10.36922/td.258

