Page 50 - TD-2-1
P. 50
Tumor Discovery Breast cancer optical differentiation
https://doi.org/10.1016/j.compbiomed.2016.06.023 73. Coudray N, Ocampo PS, Sakellaropoulos T, et al., 2018,
Classification and mutation prediction from non–small cell
65. Hossain S, Mohammadi FA, Nejad ET, 2011, Neural network
approach for the determination of heat source parameters lung cancer histopathology images using deep learning. Nat
from surface temperature image. In: 2011 24 Canadian Med, 24(10): 1559–1567.
th
Conference on Electrical and Computer Engineering 74. Kim SH, Cornacchi SD, Heller B, et al., 2013, An evaluation
(CCECE). IEEE. p. 1109–1112. of intraoperative digital specimen mammography versus
conventional specimen radiography for the excision of
66. Pradipta AR, Tanei T, Morimoto K, et al., 2020, Emerging nonpalpable breast lesions. Am J Surg, 205(6): 703–710.
technologies for real‐time intraoperative margin assessment
in future breast‐conserving surgery. Adv Sci (Weinh), https://doi/org/10.1016/j.amjsurg.2012.08.010
7(9): 1901519. 75. Ha R, Friedlander LC, Hibshoosh H, et al., 2018, Optical
https://doi/org/10.1002/advs.201901519 coherence tomography: A novel imaging method for post-
lumpectomy breast margin assessment-a multi-reader study.
67. Halicek M, Fabelo H, Ortega S, et al., 2019, In-vivo and Acad Radiol, 25(3): 279–287.
ex-vivo tissue analysis through hyperspectral imaging
techniques: Revealing the invisible features of cancer. https://doi.org/10.1016/j.acra.2017.09.018
Cancers, 11(6): 756. 76. Wong TT, Zhang R, Hai P, et al., 2017, Fast label-free
https://doi.org/10.3390/cancers11060756 multilayered histology-like imaging of human breast cancer
by photoacoustic microscopy. Sci Adv, 3(5): e1602168.
68. McCormack DR, Walsh AJ, Sit W, et al., 2014, In vivo
hyperspectral imaging of microvessel response to https://doi.org/10.1126/sciadv.1602168
trastuzumab treatment in breast cancer xenografts. Biomed 77. Moschetta M, Telegrafo M, Introna T, et al., 2015, Role of
Opt Express, 5(7): 2247–2261. specimen US for predicting resection margin status in breast
https://doi.org/10.1364/BOE.5.002247 conserving therapy. G Chir, 36(5): 201–204.
69. Kim B, Kehtarnavaz N, LeBoulluec P, Liu H, et al., 2013, https://doi.org/10.11138/gchir/2015.36.5.201
Automation of ROI Extraction in Hyperspectral Breast 78. Tang R, Saksena M, Coopey SB, et al., 2016, Intraoperative
Images. In: 2013 35 Annual International Conference of the micro-computed tomography (micro-CT): A novel method
th
IEEE Engineering in Medicine and Biology Society (EMBC). for determination of primary tumour dimensions in breast
IEEE. p. 3658–3661. cancer specimens. Br J Radiol, 89(1058): 20150581.
70. Pourreza-Shahri R, Saki F, Kehtarnavaz N, Leboulluec P, 79. Schnabel F, Boolbol SK, Gittleman M, et al., 2014, A
et al., 2013, Classification of ex-vivo Breast Cancer Positive randomized prospective study of lumpectomy margin
Margins Measured by Hyperspectral Imaging. In: 2013 assessment with use of MarginProbe in patients with
IEEE International Conference on Image Processing, ICIP nonpalpable breast malignancies. Ann Surg Oncol, 21(5):
2013-Proceedings. p. 1408–1412. 1589–1595.
https://doi.org/10.1109/ICIP.2013.6738289 https://doi.org/10.1245/s10434-014-3602-0
71. Sterenborg HJ, Kho E, de Boer LL, et al., 2014, Hyperspectral 80. Dixon JM, Renshaw L, Young O, et al., 2016, Intra-operative
imaging for intraoperative margin assessment during breast assessment of excised breast tumour margins using ClearEdge
cancer surgery. Opt InfoBase Conf Papers, 2016: 6–9. imaging device. Eur J Surg Oncol, 42(12): 1834–1840.
https://doi.org/10.1364/ACPC.2016.AF1K.6 https://doi.org/10.1016/j.ejso.2016.07.141
72. Bakhshandeh M, Tutuncuoglu SO, Fischer G, et al., 2007, 81. Ortega S, Halicek M, Fabelo H, et al., 2020, Hyperspectral
Use of imprint cytology for assessment of surgical margins imaging and deep learning for the detection of breast cancer
in lumpectomy specimens of breast cancer patients. Diagn cells in digitized histological images. Proc SPIE Int Soc Opt
Cytopathol, 35(10): 656–659. Eng, 11320: 206–214.
Volume 2 Issue 1 (2023) 15 https://doi.org/10.36922/td.258

