Page 50 - TD-2-1
P. 50

Tumor Discovery                                                         Breast cancer optical differentiation



               https://doi.org/10.1016/j.compbiomed.2016.06.023  73.  Coudray N, Ocampo PS, Sakellaropoulos T, et al., 2018,
                                                                  Classification and mutation prediction from non–small cell
            65.  Hossain S, Mohammadi FA, Nejad ET, 2011, Neural network
               approach for the determination of heat source parameters   lung cancer histopathology images using deep learning. Nat
               from surface temperature image. In:  2011  24   Canadian   Med, 24(10): 1559–1567.
                                                  th
               Conference on Electrical and Computer Engineering   74.  Kim SH, Cornacchi SD, Heller B, et al., 2013, An evaluation
               (CCECE). IEEE. p. 1109–1112.                       of intraoperative digital specimen mammography versus
                                                                  conventional specimen radiography for the excision of
            66.  Pradipta AR, Tanei T, Morimoto K, et al., 2020, Emerging   nonpalpable breast lesions. Am J Surg, 205(6): 703–710.
               technologies for real‐time intraoperative margin assessment
               in future breast‐conserving surgery.  Adv Sci (Weinh),      https://doi/org/10.1016/j.amjsurg.2012.08.010
               7(9): 1901519.                                  75.  Ha R, Friedlander LC, Hibshoosh H, et al., 2018, Optical
               https://doi/org/10.1002/advs.201901519             coherence tomography: A novel imaging method for post-
                                                                  lumpectomy breast margin assessment-a multi-reader study.
            67.  Halicek M, Fabelo H, Ortega S,  et al., 2019,  In-vivo and   Acad Radiol, 25(3): 279–287.
               ex-vivo tissue analysis through hyperspectral imaging
               techniques: Revealing the invisible features of cancer.      https://doi.org/10.1016/j.acra.2017.09.018
               Cancers, 11(6): 756.                            76.  Wong TT, Zhang R, Hai P,  et al., 2017, Fast label-free
               https://doi.org/10.3390/cancers11060756            multilayered histology-like imaging of human breast cancer
                                                                  by photoacoustic microscopy. Sci Adv, 3(5): e1602168.
            68.  McCormack DR,  Walsh  AJ,  Sit W,  et al.,  2014,  In vivo
               hyperspectral  imaging  of  microvessel  response  to      https://doi.org/10.1126/sciadv.1602168
               trastuzumab treatment in breast cancer xenografts. Biomed   77.  Moschetta M, Telegrafo M, Introna T, et al., 2015, Role of
               Opt Express, 5(7): 2247–2261.                      specimen US for predicting resection margin status in breast
               https://doi.org/10.1364/BOE.5.002247               conserving therapy. G Chir, 36(5): 201–204.
            69.  Kim B, Kehtarnavaz N, LeBoulluec P, Liu H, et al., 2013,      https://doi.org/10.11138/gchir/2015.36.5.201
               Automation of ROI Extraction in Hyperspectral Breast   78.  Tang R, Saksena M, Coopey SB, et al., 2016, Intraoperative
               Images. In: 2013 35  Annual International Conference of the   micro-computed tomography (micro-CT): A novel method
                             th
               IEEE Engineering in Medicine and Biology Society (EMBC).   for determination of primary tumour dimensions in breast
               IEEE. p. 3658–3661.                                cancer specimens. Br J Radiol, 89(1058): 20150581.
            70.  Pourreza-Shahri R, Saki F, Kehtarnavaz N, Leboulluec P,   79.  Schnabel F, Boolbol SK, Gittleman M,  et al., 2014, A
               et al., 2013, Classification of ex-vivo Breast Cancer Positive   randomized prospective study of lumpectomy margin
               Margins Measured by Hyperspectral Imaging. In:  2013   assessment with use of MarginProbe in patients with
               IEEE International Conference on Image Processing, ICIP   nonpalpable breast malignancies.  Ann Surg Oncol, 21(5):
               2013-Proceedings. p. 1408–1412.                    1589–1595.
               https://doi.org/10.1109/ICIP.2013.6738289          https://doi.org/10.1245/s10434-014-3602-0
            71.  Sterenborg HJ, Kho E, de Boer LL, et al., 2014, Hyperspectral   80.  Dixon JM, Renshaw L, Young O, et al., 2016, Intra-operative
               imaging for intraoperative margin assessment during breast   assessment of excised breast tumour margins using ClearEdge
               cancer surgery. Opt InfoBase Conf Papers, 2016: 6–9.   imaging device. Eur J Surg Oncol, 42(12): 1834–1840.
               https://doi.org/10.1364/ACPC.2016.AF1K.6           https://doi.org/10.1016/j.ejso.2016.07.141
            72.  Bakhshandeh M, Tutuncuoglu SO, Fischer G, et al., 2007,   81.  Ortega S, Halicek M, Fabelo H, et al., 2020, Hyperspectral
               Use of imprint cytology for assessment of surgical margins   imaging and deep learning for the detection of breast cancer
               in lumpectomy specimens of breast cancer patients. Diagn   cells in digitized histological images. Proc SPIE Int Soc Opt
               Cytopathol, 35(10): 656–659.                       Eng, 11320: 206–214.

















            Volume 2 Issue 1 (2023)                         15                          https://doi.org/10.36922/td.258
   45   46   47   48   49   50   51   52   53   54   55