Page 86 - TD-3-1
P. 86

Tumor Discovery                                      Missense mutations in CXCR1: Impact on stability and function



            21.  Huynh N, Mallik B, Zhang L, Martins-Green M, Morikis  D.   32.  UniProt Consortium. UniProt: A  hub for protein
               Computational studies of CXCR1, the  receptor of IL-8/  information. Nucleic Acids Res. 2015;43:D204-D212.
               CXCL8, using molecular dynamics and electrostatics.      doi: 10.1093/nar/gku989
               Biopolymers. 2008;89(1):52-61.
                                                               33.  Goodsell DS, Zardecki C, Di Costanzo L, et al. RCSB protein
               doi: 10.1002/bip.20851
                                                                  data bank: Enabling biomedical research and drug discovery.
            22.  Pandurangan  AP,  Blundell  TL.  Prediction  of  impacts  of   Protein Sci. 2020;29(1):52-65.
               mutations on protein structure and interactions: SDM, a
               statistical approach, and mCSM, using machine learning.      doi: 10.1002/pro.3730
               Protein Sci. 2020;29(1):247-257.                34.  Hecht M, Bromberg Y, Rost B. Better prediction of
                                                                  functional effects for sequence variants.  BMC Genomics.
               doi: 10.1002/pro.3774
                                                                  2015;16(Suppl 8):S1.
            23.  Capriotti E, Altman RB, Bromberg Y. Collective judgment
               predicts disease-associated single nucleotide variants. BMC      doi: 10.1186/1471-2164-16-S8-S1
               Genomics. 2013;14(Suppl 3):S2.                  35.  Mi H, Lazareva-Ulitsky B, Loo R,  et al. The PANTHER
               doi: 10.1186/1471-2164-14-S3-S2                    database of protein families, subfamilies, functions and
                                                                  pathways. Nucleic Acids Res. 2005;33:D284-D288.
            24.  López-Ferrando V, Gazzo A, de la Cruz X, Orozco M,
               Gelpí JL. PMut: A  web-based tool for the annotation of      doi: 10.1093/nar/gki078
               pathological variants on proteins, 2017 update. Nucleic Acids   36.  Ng PC, Henikoff S. SIFT: Predicting amino acid changes that
               Res. 2017;45(W1):W222-W228.                        affect protein function. Nucleic Acids Res. 2003;31(13):3812-3814.
               doi: 10.1093/nar/gkx313                            doi: 10.1093/nar/gkg509
            25.  Choi Y, Chan AP. PROVEAN web server: A tool to predict   37.  Bendl J, Stourac J, Salanda O,  et al. PredictSNP: Robust
               the functional effect of amino acid substitutions and indels.   and accurate consensus classifier for prediction of disease-
               Bioinformatics. 2015;31(16):2745-2747.             related mutations. PLoS Comput Biol. 2014;10(1):e1003440.
               doi: 10.1093/bioinformatics/btv195                 doi: 10.1371/journal.pcbi.1003440
            26.  Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt  TR,   38.  Pejaver V, Mooney SD, Radivojac P. Missense variant
               Campbell C. FATHMM-XF: Accurate prediction of      pathogenicity predictors generalize well across a range
               pathogenic point mutations via extended features.   of function-specific prediction challenges.  Hum Mutat.
               Bioinformatics. 2018;34(3):511-513.                2017;38(9):1092-1108.
               doi: 10.1093/bioinformatics/btx536                 doi: 10.1002/humu.23258
            27.  Pires DE, Ascher DB, Blundell TL. mCSM: Predicting   39.  Ghosh M, Sodhi SS, Sharma N, et al. An integrated in silico
               the effects of mutations in proteins using graph-based   approach  for  functional  and  structural  impact  of  non-
               signatures. Bioinformatics. 2014;30(3):335-342.    synonymous SNPs in the MYH1 gene in Jeju Native Pigs.
               doi: 10.1093/bioinformatics/btt691                 BMC Genet. 2016;17:35.
            28.  Worth CL, Preissner R, Blundell TL. SDM--a server for      doi: 10.1186/s12863-016-0341-1
               predicting effects of mutations on protein stability and   40.  Vila JA. Proteins’ evolution upon point mutations.  ACS
               malfunction. Nucleic Acids Res. 2011;39:W215-222.  Omega. 2022;7(16):14371-14376.
               doi: 10.1093/nar/gkr363                            doi: 10.1021/acsomega.2c01407
            29.  Pires DE, Ascher DB, Blundell TL. DUET: A  server for   41.  Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL.
               predicting effects of mutations on protein stability using   SDM: A server for predicting effects of mutations on protein
               an integrated computational approach.  Nucleic Acids Res.   stability. Nucleic Acids Res. 2017;45(W1):W229-W235.
               2014;42:W314-W319.
                                                                  doi: 10.1093/nar/gkx439
               doi: 10.1093/nar/gku411
                                                               42.  Choudhury A, Mohammad T, Anjum F, et al. Comparative
            30.  Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic   analysis of web-based programs for single amino acid
               Acids Res. 2023;51(D1):D933-D941.                  substitutions in proteins. PLoS One. 2022;17(5):e0267084.
               doi: 10.1093/nar/gkac958                           doi: 10.1371/journal.pone.0267084
            31.  Sherry ST, Ward MH, Kholodov M,  et al. dbSNP: The   43.  AlAjmi MF, Khan S, Choudhury A,  et al. Impact of
               NCBI database of genetic variation.  Nucleic Acids Res.   deleterious mutations on structure, function and stability of
               2001;29(1):308-311.
                                                                  serum/glucocorticoid regulated kinase 1: A gene to diseases
               doi: 10.1093/nar/29.1.308                          correlation. Front Mol Biosci. 2021;8:780284.


            Volume 3 Issue 1 (2024)                         22                         https://doi.org/10.36922/td.2512
   81   82   83   84   85   86   87   88   89   90   91