Page 86 - TD-3-1
P. 86
Tumor Discovery Missense mutations in CXCR1: Impact on stability and function
21. Huynh N, Mallik B, Zhang L, Martins-Green M, Morikis D. 32. UniProt Consortium. UniProt: A hub for protein
Computational studies of CXCR1, the receptor of IL-8/ information. Nucleic Acids Res. 2015;43:D204-D212.
CXCL8, using molecular dynamics and electrostatics. doi: 10.1093/nar/gku989
Biopolymers. 2008;89(1):52-61.
33. Goodsell DS, Zardecki C, Di Costanzo L, et al. RCSB protein
doi: 10.1002/bip.20851
data bank: Enabling biomedical research and drug discovery.
22. Pandurangan AP, Blundell TL. Prediction of impacts of Protein Sci. 2020;29(1):52-65.
mutations on protein structure and interactions: SDM, a
statistical approach, and mCSM, using machine learning. doi: 10.1002/pro.3730
Protein Sci. 2020;29(1):247-257. 34. Hecht M, Bromberg Y, Rost B. Better prediction of
functional effects for sequence variants. BMC Genomics.
doi: 10.1002/pro.3774
2015;16(Suppl 8):S1.
23. Capriotti E, Altman RB, Bromberg Y. Collective judgment
predicts disease-associated single nucleotide variants. BMC doi: 10.1186/1471-2164-16-S8-S1
Genomics. 2013;14(Suppl 3):S2. 35. Mi H, Lazareva-Ulitsky B, Loo R, et al. The PANTHER
doi: 10.1186/1471-2164-14-S3-S2 database of protein families, subfamilies, functions and
pathways. Nucleic Acids Res. 2005;33:D284-D288.
24. López-Ferrando V, Gazzo A, de la Cruz X, Orozco M,
Gelpí JL. PMut: A web-based tool for the annotation of doi: 10.1093/nar/gki078
pathological variants on proteins, 2017 update. Nucleic Acids 36. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that
Res. 2017;45(W1):W222-W228. affect protein function. Nucleic Acids Res. 2003;31(13):3812-3814.
doi: 10.1093/nar/gkx313 doi: 10.1093/nar/gkg509
25. Choi Y, Chan AP. PROVEAN web server: A tool to predict 37. Bendl J, Stourac J, Salanda O, et al. PredictSNP: Robust
the functional effect of amino acid substitutions and indels. and accurate consensus classifier for prediction of disease-
Bioinformatics. 2015;31(16):2745-2747. related mutations. PLoS Comput Biol. 2014;10(1):e1003440.
doi: 10.1093/bioinformatics/btv195 doi: 10.1371/journal.pcbi.1003440
26. Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, 38. Pejaver V, Mooney SD, Radivojac P. Missense variant
Campbell C. FATHMM-XF: Accurate prediction of pathogenicity predictors generalize well across a range
pathogenic point mutations via extended features. of function-specific prediction challenges. Hum Mutat.
Bioinformatics. 2018;34(3):511-513. 2017;38(9):1092-1108.
doi: 10.1093/bioinformatics/btx536 doi: 10.1002/humu.23258
27. Pires DE, Ascher DB, Blundell TL. mCSM: Predicting 39. Ghosh M, Sodhi SS, Sharma N, et al. An integrated in silico
the effects of mutations in proteins using graph-based approach for functional and structural impact of non-
signatures. Bioinformatics. 2014;30(3):335-342. synonymous SNPs in the MYH1 gene in Jeju Native Pigs.
doi: 10.1093/bioinformatics/btt691 BMC Genet. 2016;17:35.
28. Worth CL, Preissner R, Blundell TL. SDM--a server for doi: 10.1186/s12863-016-0341-1
predicting effects of mutations on protein stability and 40. Vila JA. Proteins’ evolution upon point mutations. ACS
malfunction. Nucleic Acids Res. 2011;39:W215-222. Omega. 2022;7(16):14371-14376.
doi: 10.1093/nar/gkr363 doi: 10.1021/acsomega.2c01407
29. Pires DE, Ascher DB, Blundell TL. DUET: A server for 41. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL.
predicting effects of mutations on protein stability using SDM: A server for predicting effects of mutations on protein
an integrated computational approach. Nucleic Acids Res. stability. Nucleic Acids Res. 2017;45(W1):W229-W235.
2014;42:W314-W319.
doi: 10.1093/nar/gkx439
doi: 10.1093/nar/gku411
42. Choudhury A, Mohammad T, Anjum F, et al. Comparative
30. Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic analysis of web-based programs for single amino acid
Acids Res. 2023;51(D1):D933-D941. substitutions in proteins. PLoS One. 2022;17(5):e0267084.
doi: 10.1093/nar/gkac958 doi: 10.1371/journal.pone.0267084
31. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: The 43. AlAjmi MF, Khan S, Choudhury A, et al. Impact of
NCBI database of genetic variation. Nucleic Acids Res. deleterious mutations on structure, function and stability of
2001;29(1):308-311.
serum/glucocorticoid regulated kinase 1: A gene to diseases
doi: 10.1093/nar/29.1.308 correlation. Front Mol Biosci. 2021;8:780284.
Volume 3 Issue 1 (2024) 22 https://doi.org/10.36922/td.2512

