Page 80 - ARNM-2-4
P. 80

Advances in Radiotherapy
            & Nuclear Medicine                                           Comparison of online ATP versus offline ATS plans



            12.  Poon DMC, Yang B, Geng H, et al. Analysis of online plan   patient tumor trajectories. Med Phys. 2018;45(2):830-845.
               adaptation for 1.5T magnetic resonance-guided stereotactic      doi: 10.1002/mp.12731
               body radiotherapy (MRgSBRT) of prostate cancer. J Cancer
               Res Clin Oncol. 2022;24:1-10.                   22.  Paulson ES, Ahunbay E, Chen X,  et al. 4D-MRI driven
                                                                  MR-guided  online  adaptive  radiotherapy  for  abdominal
               doi: 10.1007/s00432-022-03950-1
                                                                  stereotactic body radiation therapy on a high field MR-Linac:
            13.  Ikushima H, Balter P, Komaki R, et al. Daily alignment results   Implementation and initial clinical experience. Clin Transl
               of in-room computed tomography-guided stereotactic body   Radiat Oncol. 2020;23:72-79.
               radiation  therapy  for  lung  cancer.  Int J Radiat Oncol Biol
               Phys. 2011;79(2):473-480.                          doi: 10.1016/j.ctro.2020.05.002
                                                               23.  Tseng CL, Chen H, Stewart J,  et  al. High grade glioma
               doi: 10.1016/j.ijrobp.2009.11.009
                                                                  radiation therapy on a high field 1.5 Tesla MR-Linac-workflow
            14.  Gong W, Yao Y, Ni J, et al. Deep learning-based low-dose CT   and initial experience with daily adapt-to-position
               for adaptive radiotherapy of abdominal and pelvic tumors.   (ATP) MR guidance: A first report. Front Oncol. 2022;12:
               Front Oncol. 2022;12:968537.                       1060098.
               doi: 10.3389/fonc.2022.968537                      doi: 10.3389/fonc.2022.1060098
            15.  Kensen CM, Janssen TM, Betgen A,  et al. Effect of   24.  Ruggieri R, Rigo M, Naccarato S, et al. Adaptive SBRT by
               intrafraction adaptation on PTV margins for MRI guided   1.5 T MR-linac for prostate cancer: On the accuracy of dose
               online adaptive radiotherapy for rectal cancer. Radiat Oncol.   delivery in view of the prolonged session time. Phys Med.
               2022;17(1):110.                                    2020;80:34-41.
               doi: 10.1186/s13014-022-02079-2                    doi: 10.1016/j.ejmp.2020.09.026
            16.  Nierer L, Eze C, da Silva Mendes V, et al. Dosimetric benefit   25.  Noel CE, Parikh PJ, Spencer CR,  et al. Comparison of
               of MR-guided online adaptive radiotherapy in different   onboard low-field magnetic resonance imaging versus
               tumor entities: Liver, lung, abdominal lymph nodes,   onboard computed tomography for anatomy visualization
               pancreas and prostate. Radiat Oncol. 2022;17(1):53.  in radiotherapy. Acta Oncol. 2015;54(9):1474-1482.
               doi: 10.1186/s13014-022-02021-6                    doi: 10.3109/0284186X.2015.1062541
            17.  Yan D, Liang J. Expected treatment dose construction and   26.  Yousaf T, Dervenoulas G, Politis M. Advances in MRI
               adaptive inverse planning optimization: Implementation   methodology. Int Rev Neurobiol. 2018;141:31-76.
               for offline head and neck cancer adaptive radiotherapy. Med
               Phys. 2013;40(2):021719.                           doi: 10.1016/bs.irn.2018.08.008
               doi: 10.1118/1.4788659                          27.  Weygand J, Fuller CD, Ibbott GS, et al. Spatial precision in
                                                                  magnetic resonance imaging-guided radiation therapy: The
            18.  Lee VS, SchettIno G, Nisbet A. UK adaptive radiotherapy   role of geometric distortion. Int J Radiat Oncol Biol Phys.
               practices for head and neck cancer patients.  BJR Open.   2016;95:1304-1316.
               2020;2(1):20200051.
                                                                  doi: 10.1016/j.ijrobp.2016.02.059
               doi: 10.1259/bjro.20200051
                                                               28.  Gupta A,  Dunlop A,  Mitchell A,  et al. Online adaptive
            19.  Zhang B, Lee SW, Chen S, et al. Action levels on dose and   radiotherapy for head and neck cancers on the MR linear
               anatomic variation for adaptive Radiation Therapy using   Accelerator: Introducing a novel modified Adapt-to-Shape
               Daily Offline Plan evaluation: Preliminary results.  Pract   approach. Clin Transl Radiat Oncol. 2021;32:48-51.
               Radiat Oncol. 2019;9(1):49-54.
                                                                  doi: 10.1016/j.ctro.2021.11.001
               doi: 10.1016/j.prro.2018.08.006
                                                               29.  Dassen MG, Janssen T, Kusters M,  et al. Comparing
            20.  Yap ML, Sun A, Higgins J, et al. Adaptive dose escalation using   adaptation strategies in MRI-guided online adaptive
               serial four-dimensional Positron Emission Tomography/  radiotherapy for prostate cancer: Implications for treatment
               Computed tomography scans during Radiotherapy for
               locally Advanced Non-small Cell Lung Cancer. Clin Oncol   margins. Radiother Oncol. 2023;186:109761.
               (R Coll Radiol). 2016;28(12):e199-e205.            doi: 10.1016/j.radonc.2023.109761
               doi: 10.1016/j.clon.2016.08.011                 30.  Parchur AK, Lim S, Nasief  HG,  et  al. Auto-detection of
                                                                  necessity for MRI-guided online adaptive replanning using
            21.  Teo TP, Ahmed SB, Kawalec P, et al. Feasibility of predicting
               tumor motion using online data acquired during treatment   a machine learning classifier. Med Phys. 2023;50(1):440-448.
               and a generalized neural network optimized with offline      doi: 10.1002/mp.16047





            Volume 2 Issue 4 (2024)                         9                              doi: 10.36922/arnm.4919
   75   76   77   78   79   80   81   82   83   84   85