Page 36 - BH-2-2
P. 36
Brain & Heart Predictive modeling using electroencephalogram
signal processing could concentrate on investigating Data. 2019;6(1):19.
innovative methods for extracting features, merging doi: 10.1038/s41597-019-0027-4
multimodal data for a profound understanding, carrying
out long-term studies to ensure practical application, 4. Zhang X, Li J, Liu Y, et al. Design of a fatigue detection
creating customized and adaptive BCI systems, tackling system for high-speed trains based on driver vigilance using
a wireless wearable EEG. Sensors (Basel). 2017;17(3):486.
moral and societal concerns, and creating uniformity for
comparative purposes. By tackling these issues, the field doi: 10.3390/s17030486
can progress toward more effective BCI systems with 5. Nader M, Jacyna-Gołda I, Nader S, Nehring K. Using BCI
greater societal impact and applicability. This will ensure and EEG to process and analyze driver’s brain activity signals
responsible deployment, equitable access, and continuous during VR simulation. Arch Transp. 2021;60:137-153.
advancement in neurotechnology innovation. doi: 10.5604/01.3001.0015.6305
Acknowledgments 6. Zhou X, Yao D, Zhu, M, et al. Vigilance detection method
for high‐speed rail using wireless wearable EEG collection
None. technology based on low‐rank matrix decomposition. IET
Intell Transp Syst. 2018;12(8):819-825.
Funding
doi: 10.1049/iet-its.2017.0239
None.
7. He S, Chen L, Yue M. Reliability analysis of driving behaviour
Conflict of interest in road traffic system considering synchronization of neural
activity. NeuroQuantology. 2018;16(4):62-68.
The authors declare that they have no competing interests.
doi: 10.14704/nq.2018.16.4.1209
Author contributions 8. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM,
Conceptualization: S. K. B. Sangeetha Hung CP, Lance BJ. EEGNet: A compact convolutional
Formal analysis: Saurav Mallik neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018;15:056013.
Investigation: S. K. B. Sangeetha
Methodology: Sandeep Kumar Mathivanan doi: 10.1088/1741-2552/aace8c
Writing—original draft: S. K. B. Sangeetha 9. Doudou M, Bouabdallah A, Berge-Cherfaoui V. Driver
Writing—review & editing: Aimin Li drowsiness measurement technologies: Current research,
market solutions, and challenges. Int J Intell Transp Syst Res.
Ethics approval and consent to participate 2020;18(2):297-319.
Not applicable. doi: 10.1007/s13177-019-00199-w
Consent for publication 10. Haghani M, Bliemer MC, Farooq B, et al. Applications of
brain imaging methods in driving behaviour research. Accid
Not applicable. Anal Prev. 2021;154:106093.
Availability of data doi: 10.1016/j.aap.2021.106093
11. Murthy GN, Khan ZA. Cognitive attention behaviour
Not applicable.
detection systems using Electroencephalograph (EEG)
References signals. Res J Pharm Technol. 2014;7(2):238-247.
12. Pal D, Palit S, Dey A. Brain computer interface: A review.
1. Qi G, Zhao S, Ceder AA, Guan W, Yan X. Wielding and In: Computational Advancement in Communication, Circuits
evaluating the removal composition of common artefacts in and Systems. Cham: Springer; 2022. p. 25-35.
EEG signals for driving behaviour analysis. Accid Anal Prev.
2021;159:106223. doi: 10.1007/978-3-319-10978-7_1
doi: 10.1016/j.aap.2021.106223 13. Zero E, Bersani C, Zero L, Sacile R. Towards real-time
monitoring of fear in driving sessions. IFAC-PapersOnLine.
2. Zero E, Bersani C, Sacile R. EEG based BCI system for
driver’s arm movements identification. In: Automation, 2019;52(19):299-304.
Robotics and Communications for Industry 4.0. Vol. 77. doi: 10.1016/j.ifacol.2019.12.068
France: International Frequency Sensor Association; 2021. 14. Aricò P, Borghini G, Di Flumeri G, Sciaraffa N,
3. Cao Z, Chuang CH, King JK, Lin CT. Multi-channel EEG Babiloni F. Passive BCI beyond the lab: Current trends and
recordings during a sustained-attention driving task. Sci future directions. Physiol Meas. 2018;39(8):08TR02.
Volume 2 Issue 2 (2024) 12 doi: 10.36922/bh.2819

