Page 36 - BH-2-2
P. 36

Brain & Heart                                                  Predictive modeling using electroencephalogram



            signal processing could concentrate on investigating   Data. 2019;6(1):19.
            innovative methods for extracting features, merging      doi: 10.1038/s41597-019-0027-4
            multimodal data for a profound understanding, carrying
            out long-term studies to ensure practical application,   4.   Zhang X, Li J, Liu Y,  et al. Design of a fatigue detection
            creating customized and adaptive BCI systems, tackling   system for high-speed trains based on driver vigilance using
                                                                  a wireless wearable EEG. Sensors (Basel). 2017;17(3):486.
            moral and societal concerns, and creating uniformity for
            comparative purposes. By tackling these issues, the field      doi: 10.3390/s17030486
            can progress toward more effective BCI systems with   5.   Nader M, Jacyna-Gołda I, Nader S, Nehring K. Using BCI
            greater societal impact and applicability. This will ensure   and EEG to process and analyze driver’s brain activity signals
            responsible deployment, equitable access, and continuous   during VR simulation. Arch Transp. 2021;60:137-153.
            advancement in neurotechnology innovation.            doi: 10.5604/01.3001.0015.6305

            Acknowledgments                                    6.   Zhou X, Yao D, Zhu, M, et al. Vigilance detection method
                                                                  for high‐speed rail using wireless wearable EEG collection
            None.                                                 technology based on low‐rank matrix decomposition. IET
                                                                  Intell Transp Syst. 2018;12(8):819-825.
            Funding
                                                                  doi: 10.1049/iet-its.2017.0239
            None.
                                                               7.   He S, Chen L, Yue M. Reliability analysis of driving behaviour
            Conflict of interest                                  in road traffic system considering synchronization of neural
                                                                  activity. NeuroQuantology. 2018;16(4):62-68.
            The authors declare that they have no competing interests.
                                                                  doi: 10.14704/nq.2018.16.4.1209
            Author contributions                               8.   Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM,
            Conceptualization: S. K. B. Sangeetha                 Hung CP, Lance BJ. EEGNet: A  compact convolutional
            Formal analysis: Saurav Mallik                        neural network for EEG-based brain-computer interfaces.
                                                                  J Neural Eng. 2018;15:056013.
            Investigation: S. K. B. Sangeetha
            Methodology: Sandeep Kumar Mathivanan                 doi: 10.1088/1741-2552/aace8c
            Writing—original draft: S. K. B. Sangeetha         9.   Doudou M, Bouabdallah A, Berge-Cherfaoui V. Driver
            Writing—review & editing: Aimin Li                    drowsiness measurement technologies: Current research,
                                                                  market solutions, and challenges. Int J Intell Transp Syst Res.
            Ethics approval and consent to participate            2020;18(2):297-319.
            Not applicable.                                       doi: 10.1007/s13177-019-00199-w
            Consent for publication                            10.  Haghani M, Bliemer MC, Farooq B, et al. Applications of
                                                                  brain imaging methods in driving behaviour research. Accid
            Not applicable.                                       Anal Prev. 2021;154:106093.
            Availability of data                                  doi: 10.1016/j.aap.2021.106093
                                                               11.  Murthy GN, Khan ZA. Cognitive attention behaviour
            Not applicable.
                                                                  detection systems using Electroencephalograph (EEG)
            References                                            signals. Res J Pharm Technol. 2014;7(2):238-247.
                                                               12.  Pal D, Palit S, Dey A. Brain computer interface: A review.
            1.   Qi G, Zhao S, Ceder AA, Guan W, Yan X. Wielding and   In: Computational Advancement in Communication, Circuits
               evaluating the removal composition of common artefacts in   and Systems. Cham: Springer; 2022. p. 25-35.
               EEG signals for driving behaviour analysis. Accid Anal Prev.
               2021;159:106223.                                   doi: 10.1007/978-3-319-10978-7_1
               doi: 10.1016/j.aap.2021.106223                  13.  Zero E, Bersani C, Zero L, Sacile R. Towards real-time
                                                                  monitoring of fear in driving sessions. IFAC-PapersOnLine.
            2.   Zero E, Bersani C, Sacile R. EEG based BCI system for
               driver’s arm movements identification. In:  Automation,   2019;52(19):299-304.
               Robotics and Communications for Industry 4.0.  Vol.  77.      doi: 10.1016/j.ifacol.2019.12.068
               France: International Frequency Sensor Association; 2021.  14.  Aricò P, Borghini G, Di Flumeri G, Sciaraffa N,
            3.   Cao Z, Chuang CH, King JK, Lin CT. Multi-channel EEG   Babiloni F. Passive BCI beyond the lab: Current trends and
               recordings  during  a sustained-attention  driving  task.  Sci   future directions. Physiol Meas. 2018;39(8):08TR02.


            Volume 2 Issue 2 (2024)                         12                               doi: 10.36922/bh.2819
   31   32   33   34   35   36   37   38   39   40   41