Page 37 - BH-2-2
P. 37

Brain & Heart                                                  Predictive modeling using electroencephalogram



               doi: 10.1088/1361-6579/aad57e                      doi: 10.1155/2022/6750757
            15.  Hasan MJ, Shon D, Im K, Choi HK, Yoo DS, Kim JM. Sleep   20.  Kanthavel D, Sangeetha SKB, Keerthana KP. An empirical
               state classification using power spectral density and residual   study of vehicle to infrastructure communications-an
               neural network with multichannel EEG signals.  Appl Sci.   intense learning of smart infrastructure for safety and
               2020;10:7639.                                      mobility. Int J Intell Netw. 2021;2:77-82.
               doi: 10.3390/app10217639                           doi: 10.1016/j.ijin.2021.06.003
            16.  Brouwer AM, Snelting A, Jaswa M, Flascher O, Krol L,   21.  Aggarwal S, Chugh N. Review of machine learning
               Zander T. Physiological Effects of Adaptive Cruise Control   techniques for EEG based brain computer interface.  Arch
               Behaviour in Real Driving. In: Proceedings of the 2017 ACM   Comput Methods Eng. 2022;29:3001-3020.
               Workshop on an Application-oriented Approach to BCI out of      doi: 10.1007/s11831-021-09684-6
               the Laboratory. 2017. p. 15-19.
                                                               22.  Ahn M, Jun  SC, Yeom HG, Cho H. Editorial:  Deep
               doi: 10.1145/3038439.3038441                       learning in brain-computer interface. Front Hum Neurosci.
            17.  Karuppusamy NS, Kang BY. Multimodal system to detect   2022;16:927567.
               driver fatigue using EEG, gyroscope, and image processing.      doi: 10.3389/fnhum.2022.927567
               IEEE Access. 2020;8:129645-129667.
                                                               23.  Zhu H, Forenzo D, He B. On the deep learning models for
               doi: 10.1109/Access.2020.3009226                   EEG-based brain-computer interface using motor imagery.
            18.  Sangeetha SKB, Kumar MS, Deeba K, Rajadurai H,   IEEE Trans Neural Syst Rehabil Eng. 2022;30:2283-2291.
               Maheshwari V, Dalu GT. An empirical analysis of an      doi: 10.1109/TNSRE.2022.3198041
               optimized pretrained deep learning model for COVID-19
               diagnosis. Comput Math Methods Med. 2022;2022:9771212.  24.  Immanuel RR, Sangeetha SKB. Analysis of EEG Signal
                                                                  with Feature and Feature Extraction Techniques for
               doi: 10.1155/2022/9771212                          Emotion Recognition Using Deep Learning Techniques. In:
                                                                  Proceedings of International Conference on Computational
            19.  Khalaf OI, Ogudo KA, Sangeetha SKB. Design of Graph-
               based layered learning-driven model for anomaly    Intelligence and Data Engineering. Singapore: Springer
               detection in distributed cloud IoT  network. Mob Inf Syst.   Nature Singapore; 2022. p. 141-154.
               2022;2022:6750757.                                 doi: 10.1007/978-981-99-0609-3_10








































            Volume 2 Issue 2 (2024)                         13                               doi: 10.36922/bh.2819
   32   33   34   35   36   37   38   39   40   41   42