Page 63 - DP-1-1
P. 63

Design+                                                        Approximate signed multipliers design approach



               latch. IEEE Magn Lett. 2020;11:1-5.             23.  Waris H, Wang C, Liu W, Han J, Lombardi F. Hybrid partial
                                                                  product-based  high-performance  approximate  recursive
               doi: 10.1109/lmag.2020.3036834
                                                                  multipliers.  IEEE Trans Emerg Top Comput. 2022;10(1):
            13.  BahmanAbadi M, Amirany A, Jafari K, Moaiyeri MH.   507-513.
               Efficient  and  highly  reliable  spintronic  non-volatile      doi: 10.1109/tetc.2020.3013977
               quaternary memory based on carbon nanotube FETs
               and multi-TMR MTJs.  ECS J Solid State Sci Technol.   24.  Yin P, Wang C, Waris H, Liu W, Han Y, Lombardi F. Design
               2022;11:061007.                                    and analysis of energy-efficient dynamic range approximate
                                                                  logarithmic multipliers for machine learning.  IEEE Trans
               doi: 10.1149/2162-8777/ac77bb                      Sustain Comput 2021;6(4):612-625.
            14.  Mehri  S,  Amirany  A,  Moaiyeri  MH, Jafari  K. Theoretical      doi: 10.1109/tsusc.2020.3004980
               circuit design of an efficient spintronic random number
               generator with an internal post-processing unit. IEEE Magn   25.  Almurib HAF, Kumar TN, Lombardi F. Approximate DCT
               Lett. 2022;13:1-5.                                 image compression using inexact computing.  IEEE Trans
                                                                  Comput. 2018;67(2):149-159.
               doi: 10.1109/lmag.2022.3200326
                                                                  doi: 10.1109/tc.2017.2731770
            15.  Amirany A, Moaiyeri MH, Jafari K. MTMR-SNQM:
               Multi-Tunnel  Magnetoresistance  Spintronic  Non-  26.  Ejtahed SAH, Timarchi S. Efficient approximate multiplier
               volatile Quaternary Memory. In:  Presented at: 2021 IEEE   based on a new 1-gate approximate compressor. Circuits Syst
                 st
               51   International Symposium on Multiple-Valued Logic   Sig Process. 2022;41(5):2699-2718.
               (ISMVL); 2021.                                     doi: 10.1007/s00034-021-01902-7
            16.  Amirany A, Meghdadi M, Moaiyeri MH, Jafari K. Stochastic   27.  Baugh CR, Wooley BA. A two’s complement parallel array
               Spintronic Neuron with Application to Image Binarization.   multiplication algorithm.  IEEE Trans Comput. 1973;C-
               In: Presented at: 2021 26  International Computer Conference,   22(12):1045-1047.
                                th
               Computer Society of Iran (CSICC); 2021.
                                                                  doi: 10.1109/t-c.1973.223648
            17.  Amirany  A,  Rajaei  R.  Nonvolatile,  spin-based,  and  low-
               power inexact full adder circuits for computing-in-memory   28.  Osorio RR, Rodriguez G. Truncated SIMD multiplier
                                                                  architecture for approximate computing in low-power
               image processing. Spin. 2019;9(3):1950013.         programmable  processors.  IEEE  Access. 2019;7:56353-
               doi: 10.1142/s2010324719500139                     56366.
            18.  Sayadi L, Timarchi S, Sheikh-Akbari A. Two efficient      doi: 10.1109/access.2019.2913743
               approximate unsigned multipliers by developing new   29.  Waris H, Wang C, Liu W. Hybrid low radix encoding-based
               configuration for approximate 4:2 compressors. IEEE Trans   approximate booth multipliers. IEEE Trans Circuits Syst II
               Circuits Syst I Regular Pap. 2023;70(4):1649-1659.  Exp Briefs. 2020;67(12):3367-3371.
               doi: 10.1109/tcsi.2023.3242558                     doi: 10.1109/tcsii.2020.2975094
            19.  Avan A, Taheri M, Moaiyeri MH, Navi K. Energy-Efficient   30.  Sang-Min K, Jin-Gyun C, Parhi KK. Low error fixed-
               approximate compressor design for error-resilient digital   width CSD multiplier with efficient sign extension.  IEEE
               signal processing. Int J Electron. 2022;110(9):1-23.  Trans Circuits Syst II Analog Digit Sig Process. 2003;50(12):
               doi: 10.1080/00207217.2022.2117854                 984-993.
            20.  Rajaei R, Amirany A. Nonvolatile low-cost approximate      doi: 10.1109/tcsii.2003.820231
               spintronic full adders for computing in memory   31.  Arasteh A, Hossein Moaiyeri M, Taheri M, Navi K,
               architectures. IEEE Trans Magn. 2020;56(4):1-8.    Bagherzadeh N. An energy and area efficient 4:2 compressor
               doi: 10.1109/tmag.2020.2974142                     based on FinFETs. Integration. 2018;60:224-231.
            21.  Spagnolo F, Corsonello P, Frustaci F, Perri S. Efficient      doi: 10.1016/j.vlsi.2017.09.010
               implementation of signed multipliers on FPGAs.  Comput   32.  Clark  LT,  Vashishtha  V,  Shifren  L,  et al.  ASAP7:  A  7-nm
               Electr Eng. 2024;116:109217.                       finFET predictive process design kit.  Microelectronics J.
               doi: 10.1016/j.compeleceng.2024.109217             2016;53:105-115.
            22.  Strollo AGM, Napoli E, De Caro D, Petra N, Saggese G, Di      doi: 10.1016/j.mejo.2016.04.006
               Meo G. Approximate multipliers using static segmentation:   33.  Ha M, Lee S. Multipliers with approximate 4–2 compressors
               Error analysis and improvements. IEEE Trans Circuits Syst I   and error  recovery modules.  IEEE Embedded Syst Lett.
               Regular Pap. 2022;69(6):2449-2462.                 2018;10(1):6-9.
               doi: 10.1109/tcsi.2022.3152921                     doi: 10.1109/les.2017.2746084


            Volume 1 Issue 1 (2024)                         8                                doi: 10.36922/dp.3882
   58   59   60   61   62   63   64   65   66   67   68