Page 64 - DP-1-1
P. 64
Design+ Approximate signed multipliers design approach
34. Ahmadinejad M, Moaiyeri MH, Sabetzadeh F. Energy doi: 10.1109/tetc.2021.3072666
and area efficient imprecise compressors for approximate 42. Pei H, Yi X, Zhou H, He Y. Design of ultra-low power
multiplication at nanoscale. AEU Int J Electron Commun. consumption approximate 4–2 compressors based on the
2019;110:152859. compensation characteristic. IEEE Trans Circuits Syst II Exp
doi: 10.1016/j.aeue.2019.152859 Briefs. 2021;68(1):461-465.
35. Yang Z, Han J, Lombardi F. Approximate Compressors for doi: 10.1109/tcsii.2020.3004929
Error-Resilient Multiplier Design. In: Presented at: 2015 43. Kumar UA, Chatterjee SK, Ahmed SE. Low-power
IEEE International Symposium on Defect and Fault Tolerance compressor-based approximate multipliers with error
in VLSI and Nanotechnology Systems (DFTS); 2015. correcting module. IEEE Embedded Syst Lett. 2022;14(2):
36. Jinghang L, Jie H, Lombardi F. New metrics for the reliability 59-62.
of approximate and probabilistic adders. IEEE Trans doi: 10.1109/les.2021.3113005
Comput. 2013;62(9):1760-1771.
44. Esposito D, Strollo AGM, Napoli E, De Caro D, Petra N.
doi: 10.1109/tc.2012.146 Approximate multipliers based on new approximate
37. Akbari O, Kamal M, Afzali-Kusha A, Pedram M. Dual- compressors. IEEE Trans Circuits Syst I Regular
quality 4:2 Compressors for utilizing in dynamic accuracy Pap. 2018;65(12):4169-4182.
configurable multipliers. IEEE Trans Very Large Scale Integr doi: 10.1109/tcsi.2018.2839266
Syst. 2017;25(4):1352-1361.
45. Waris H, Wang C, Xu C, Liu W. AxRMs: Approximate
doi: 10.1109/tvlsi.2016.2643003 Recursive Multipliers using High-Performance Building
38. Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Blocks. In: IEEE Transactions on Emerging Topics in
using MATLAB. United Kingdom; Pearson Education India; Computing; 2021. p. 1-1.
2004. doi: 10.1109/tetc.2021.3096515
39. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality 46. Strollo AGM, Napoli E, De Caro D, Petra N, Meo GD.
assessment: from error visibility to structural similarity. Comparison and extension of approximate 4-2 compressors
IEEE Trans Image Process. 2004;13(4):600-612. for low-power approximate multipliers. IEEE Trans Circuits
doi: 10.1109/tip.2003.819861 Syst I Regular Pap. 2020;67(9):3021-3034.
40. Sabetzadeh F, Moaiyeri MH, Ahmadinejad M. An Ultra- doi: 10.1109/tcsi.2020.2988353
Efficient Approximate Multiplier with Error Compensation 47. Fang B, Liang H, Xu D, et al. Approximate multipliers
for Error-Resilient Applications. In: IEEE Transactions on based on a novel unbiased approximate 4-2 compressor.
Circuits and Systems II: Express Briefs; 2022. p. 1-1. Integration. 2021;81:17-24.
doi: 10.1109/tcsii.2022.3215065 doi: 10.1016/j.vlsi.2021.05.003
41. Ahmadinejad M, Moaiyeri MH. Energy-and Quality- 48. Baraati F, Nasab MT, Ghaderi R, Jafari K. FinFET-based
Efficient Approximate Multipliers for Neural Network and Low-Power Approximate Multiplier for Neural Network
Image Processing Applications. In: IEEE Transactions on Hardware Accelerator. In: Presented at: 2022 Iranian
Emerging Topics in Computing; 2021. p. 1-1. International Conference on Microelectronics (IICM); 2022.
Volume 1 Issue 1 (2024) 9 doi: 10.36922/dp.3882

