Page 101 - ESAM-1-2
P. 101

Engineering Science in
            Additive Manufacturing                                     Impact of machine factors on PBF part surface quality



               IOP Conf Ser Mater Sci Eng. 2021;1178:012006.      2020;13(23):5533.
               doi: 10.1088/1757-899X/1178/1/012006               doi: 10.3390/ma13235533
            18.  Shipley H, McDonnell D, Culleton M, et al. Optimisation   28.  Ravi S, Satheeshkumar V, Kumaran M. Mechanical
               of process parameters to address fundamental challenges   properties and microstructure characterization of stainless
               during selective laser melting of Ti-6Al-4V: A review. Int J   steel 316L and maraging steel 1.2709 bimetallic structures
               Mach Tools Manuf. 2018;128:1-20.                   fabricated by laser powder bed fusion. J Mater Eng Perform.
               doi: 10.1016/j.ijmachtools.2018.01.003             2025.
            19.  Żaba K, Balcerzak M, Kuczek Ł, et al. Application of powder-     doi: 10.1007/s11665-025-11451-8
               bed fusion of metals using a laser for manufacturing of   29.  Jarfors AEW, Shashidhar ACGH, Yepur HK, Steggo  J,
               M300 maraging steel tools intended for sheet metal bending.   Andersson NE, Stolt R. Build strategy and impact strength
               Materials (Basel). 2024;17(24):6185.               of SLM produced maraging steel (1.2709).  Metals.
               doi: 10.3390/ma17246185                            2021;11(1):51.
            20.  Raghuraman V, Kumar TS. The impact of different heat      doi: 10.3390/met11010051
               treatments on the surface characteristics, residual stresses,   30.  Jhabvala J, Boillat E, Antignac T, Glardon R. On the effect
               and tensile strength of maraging steel 1.2709 parts produced   of scanning strategies in the selective laser melting process.
               by LPBF. Results Eng. 2025;26:105509.              Virtual Phys Prototyp. 2010;5(2):99-109.
               doi: 10.1016/j.rineng.2025.105509                  doi: 10.1080/17452751003688368
            21.  Marchini L, Tonolini P, Montesano L, et al. The corrosion   31.  Jägle EA, Choi PP, Van Humbeeck J, Raabe D. Precipitation
               resistance of maraging steel 1.2709 produced by L-PBF   and austenite reversion behavior of a maraging steel
               in contact with molten Al-alloys.  Procedia Struct Integr.   produced by selective laser melting.  J  Mater Res.
               2024;53:203-211.                                   2014;29(17):2072-2079.
               doi: 10.1016/j.prostr.2024.01.025                  doi: 10.1557/jmr.2014.204
            22.  Sawicki J, Stachurski W, Kuryło P, et al. Comparative analysis   32.  Hoseini  SRE,  Arabi  H,  Razavizadeh  H.  Improvement  in
               of the dimensional accuracy and surface characteristics of   mechanical properties of C300 maraging steel by application
               gears manufactured using the 3D printing (DMLS) technique   of VAR process. Vacuum. 2008;82(5):521-528.
               from 1.2709 steel. Materials (Basel). 2025;18(7):1461.
                                                                  doi: 10.1016/j.vacuum.2007.08.008
               doi: 10.3390/ma18071461
                                                               33.  Hatos I, Hargitai H, Fekete G, Fekete I. Effect of energy
            23.  Asnafi N. Application of laser-based powder bed fusion for   density  on  the  mechanical  properties  of  1.2709  maraging
               direct metal tooling. Metals. 2021;11(3):458.      steel produced by laser powder bed fusion. Materials (Basel).
               doi: 10.3390/met11030458                           2024;17(14):3432.
            24.  Piekło J, Garbacz-Klempka A, Myszka D,  Figurski K.      doi: 10.3390/ma17143432
               Numerical and experimental analysis of strength loss of   34.  Kumaran M, Ravi S. Influence of hybrid additive
               1.2709 maraging steel produced by selective laser melting   manufacturing processes on the microstructure and
               (SLM) under thermo-mechanical  fatigue conditions.   mechanical properties of maraging steel 1.2709 components
               Materials (Basel). 2023;16(24):7682.               with post-processing heat treatments.  Mater Lett.
               doi: 10.3390/ma16247682                            2024;377:137427.

            25.  Strakosova A, Průša F, Michalcová A, Kratochvíl P,      doi: 10.1016/j.matlet.2024.137427
               Vojtěch D. Annealing response of additively manufactured   35.  Vinoth V, Kumaran M, Ravi S. Investigation of heat
               high-strength 1.2709 maraging steel depending on elevated   treatment effects on  hybrid  manufacturing  of stainless
               temperatures. Materials (Basel). 2022;15(11):3753.  steel 316L components using directed energy deposition:
               doi: 10.3390/ma15113753                            Microstructural and tensile behavior analysis. J Mater Eng
                                                                  Perform. 2025.
            26.  Černašėjus O, Škamat J, Markovič V,  et al. Surface laser
               processing of additive manufactured 1.2709 steel parts:      doi: 10.1007/s11665-025-11023-w
               Preliminary study. Adv Mater Sci Eng. 2019;2019:7029471.
                                                               36.  Kučerová L, Zetková I, Jeníček Š, Burdová K. Production of
               doi: 10.1155/2019/7029471                          hybrid joints by selective laser melting of maraging tool steel
                                                                  1.2709 on conventionally produced parts of the same steel.
            27.  Piekło J, Garbacz-Klempka A. Use of maraging steel
               1.2709 for implementing parts  of pressure mold devices   Materials (Basel). 2021;14(9):2105.
               with conformal cooling system.  Materials  (Basel).      doi: 10.3390/ma14092105


            Volume 1 Issue 2 (2025)                         8                          doi: 10.36922/ESAM025240014
   96   97   98   99   100   101   102   103   104   105   106