Page 61 - GTM-1-2
P. 61
Global Translational Medicine A Taxonomy of AI Assisted Medical Robots
Writing – review & editing: Jinyang Wang, Ping Li, Huating and its Application to Medical Image Diagnosis of Lung
Li, Bin Sheng Cancer. Artif Life Robot, 20: 137–144.
Ethics approval and consent to participate https://doi.org/10.1007/s10015-015-0200-6
10. Garza-Burgos M, Sanchez-Orozco E, Bayro-Corrochano E.
Not applicable. 2016, Medical Robot Vision Using the Conformai Geometric
Algebra Framework. In: 2016 IEEE-RAS 16 International
th
Consent for publication Conference on Humanoid Robots (Humanoids). p1087–
Not applicable. 1093.
https://doi.org/10.1109/humanoids.2016.7803406
Availability of data
11. Nokata N, Kato S, Feng LK, et al., 2016, Measurement of
The data that support the findings of this work are available Mechanical Characteristics for Soft Materials by Using
from the corresponding author on reasonable request. Medical Robot with Piezoelectric Tactile Sensors. In: 2016
International Symposium on Micro-NanoMechatronics and
References Human Science (MHS). Piscataway: IEEE. p1–4.
1. Tottori S, Zhang L, Qiu F, et al., 2012, Magnetic helical https://doi.org/10.1109/mhs.2016.7824164
micromachines: Fabrication, controlled swimming, and
cargo transport. Adv Mater, 24: 811–816. 12. Nguyen PB, Park JO, Park S, et al., 2016, Medical Micro-robot
Navigation Using Image Processing-blood Vessel Extraction
https://doi.org/10.1002/adma.201103818 and X-ray Calibration. In: 2016 6 IEEE International
th
2. Huang TY, Qiu F, Tung HW, et al. 2014, Generating mobile Conference on Biomedical Robotics and Biomechatronics
fluidic traps for selective three-dimensional transport of (BioRob). Piscataway: IEEE. p365–370.
microobjects. Appl Phys Lett, 105: 114102. https://doi.org/10.1109/biorob.2016.7523653
https://doi.org/10.1063/1.4895937 13. Miyashita S, Guitron S, Yoshida K, et al. Ingestible,
3. Swangnetr M, Kaber DB. 2013, Emotional state classification Controllable, and Degradable Origami Robot for Patching
in patient–robot interaction using wavelet analysis and Stomach Wounds. In: 2016 IEEE International Conference
statistics-based feature selection. IEEE Trans Hum Mach on Robotics and Automation (ICRA). Piscataway: IEEE.
Syst, 43: 63–75. p909–916.
https://doi.org/10.1109/tsmca.2012.2210408 https://doi.org/10.1109/icra.2016.7487222
4. Menciassi A, Melzer A, Dumont E, et al., 2014, Robotics and 14. Jiang G, Luo M, Bai K, et al., 2017, A Precise Positioning
Machine Learning Approaches to Improve robustness of Method for a Puncture Robot Based on a Pso-optimized bp
USgFUS: Futura. J Ther Ultrasound, 2: A25–A25. Neural Network Algorithm. Appl Sci, 7: 969.
https://doi.org/10.1186/2050-5736-2-s1-a25 https://doi.org/10.3390/app7100969
5. Svensson CM, Krusekopf S, Lücke J, et al., 2014, Automated 15. Sarikaya D, Corso JJ, Guru KA. 2017, Detection and
Detection of Circulating Tumor Cells with Naive Bayesian Localization of Robotic Tools in Robot-assisted Surgery
Classifiers. Cytometry A, 85: 501–511. Videos Using Deep Neural Networks for Region Proposal
and deTection. IEEE Trans Med Imaging, 36: 1542–1549.
https://doi.org/10.1002/cyto.a.22471
https://doi.org/10.1109/tmi.2017.2665671
6. Lyndon D, Kumar A, Kim J, et al., 2015, Convolutional
Neural Networks for Medical Clustering. In: CLEF. 16. Tang L, Qian J, Li L, et al., 2017, Multimodal Medical
Image Fusion Based on Discrete Tchebichef Moments and
7. Romero J, Diago LA, Shinoda J, et al., 2015, Evaluation of Pulse Coupled Neural Network. Int J Imaging Syst Technol,
Brain Models to Control a Robotic Origami arm Using 27: 57–65.
Holographic Neural Networks.
https://doi.org/10.1002/ima.22210
https://doi.org/10.1115/detc2015-48074
17. Jayanthi PR, Bommannaraja K, Manju R. 2017, Early
8. Kondo T, Ueno J, Takao S. 2015, Medical Image Diagnosis Detection of Macular Edema in Fundus Image Datasets
of Liver Cancer by Hybrid Feedback GMDH-type Neural Using Neural Network.
Network Using Principal Component-regression Analysis.
Artif Life Robot, 20: 145–151. 18. Namozov A, Cho YI. 2018, Convolutional Neural Network
Algorithm with Parameterized Activation Function for
https://doi.org/10.1007/s10015-015-0213-1 Melanoma Classification. In: 2018 International Conference
9. Kondo T, Ueno J, Takao S. 2015, Logistic GMDH-type Neural on Information and Communication Technology
Network Using Principal Component-regression Analysis Convergence (ICTC). p417–419.
Volume 1 Issue 2 (2022) 12 https://doi.org/10.36922/gtm.v1i2.176

