Page 61 - GTM-1-2
P. 61

Global Translational Medicine                                      A Taxonomy of AI Assisted Medical Robots



            Writing – review & editing: Jinyang Wang, Ping Li, Huating   and  its Application  to  Medical  Image  Diagnosis of Lung
               Li, Bin Sheng                                      Cancer. Artif Life Robot, 20: 137–144.
            Ethics approval and consent to participate            https://doi.org/10.1007/s10015-015-0200-6
                                                               10.  Garza-Burgos M, Sanchez-Orozco E, Bayro-Corrochano E.
            Not applicable.                                       2016, Medical Robot Vision Using the Conformai Geometric
                                                                  Algebra Framework. In: 2016 IEEE-RAS 16  International
                                                                                                  th
            Consent for publication                               Conference on Humanoid Robots (Humanoids). p1087–
            Not applicable.                                       1093.
                                                                   https://doi.org/10.1109/humanoids.2016.7803406
            Availability of data
                                                               11.  Nokata N, Kato S, Feng LK, et al., 2016, Measurement of
            The data that support the findings of this work are available   Mechanical Characteristics  for Soft  Materials by  Using
            from the corresponding author on reasonable request.  Medical Robot with Piezoelectric Tactile Sensors. In: 2016
                                                                  International Symposium on Micro-NanoMechatronics and
            References                                            Human Science (MHS). Piscataway: IEEE. p1–4.
            1.   Tottori S, Zhang L, Qiu F,  et  al., 2012, Magnetic helical      https://doi.org/10.1109/mhs.2016.7824164
               micromachines: Fabrication, controlled swimming, and
               cargo transport. Adv Mater, 24: 811–816.        12.  Nguyen PB, Park JO, Park S, et al., 2016, Medical Micro-robot
                                                                  Navigation Using Image Processing-blood Vessel Extraction
               https://doi.org/10.1002/adma.201103818             and X-ray Calibration. In: 2016  6   IEEE International
                                                                                             th
            2.   Huang TY, Qiu F, Tung HW, et al. 2014, Generating mobile   Conference on Biomedical Robotics and Biomechatronics
               fluidic traps for selective three-dimensional transport of   (BioRob). Piscataway: IEEE. p365–370.
               microobjects. Appl Phys Lett, 105: 114102.         https://doi.org/10.1109/biorob.2016.7523653
               https://doi.org/10.1063/1.4895937               13.  Miyashita S, Guitron S, Yoshida K,  et al. Ingestible,
            3.   Swangnetr M, Kaber DB. 2013, Emotional state classification   Controllable, and Degradable Origami Robot for Patching
               in patient–robot interaction using wavelet analysis and   Stomach Wounds. In: 2016 IEEE International Conference
               statistics-based feature selection.  IEEE Trans Hum Mach   on  Robotics  and Automation (ICRA). Piscataway:  IEEE.
               Syst, 43: 63–75.                                   p909–916.
               https://doi.org/10.1109/tsmca.2012.2210408         https://doi.org/10.1109/icra.2016.7487222
            4.   Menciassi A, Melzer A, Dumont E, et al., 2014, Robotics and   14.  Jiang G, Luo M, Bai K, et al., 2017, A Precise Positioning
               Machine Learning Approaches to Improve robustness of   Method for a Puncture Robot Based on a Pso-optimized bp
               USgFUS: Futura. J Ther Ultrasound, 2: A25–A25.     Neural Network Algorithm. Appl Sci, 7: 969.
               https://doi.org/10.1186/2050-5736-2-s1-a25         https://doi.org/10.3390/app7100969
            5.   Svensson CM, Krusekopf S, Lücke J, et al., 2014, Automated   15.  Sarikaya  D,  Corso  JJ,  Guru  KA. 2017,  Detection  and
               Detection of Circulating Tumor Cells with Naive Bayesian   Localization of Robotic Tools in Robot-assisted Surgery
               Classifiers. Cytometry A, 85: 501–511.             Videos Using Deep Neural Networks for Region Proposal
                                                                  and deTection. IEEE Trans Med Imaging, 36: 1542–1549.
               https://doi.org/10.1002/cyto.a.22471
                                                                  https://doi.org/10.1109/tmi.2017.2665671
            6.   Lyndon D, Kumar A, Kim J,  et al., 2015, Convolutional
               Neural Networks for Medical Clustering. In: CLEF.  16.  Tang L, Qian J, Li L,  et  al., 2017, Multimodal Medical
                                                                  Image Fusion Based on Discrete Tchebichef Moments and
            7.   Romero J, Diago LA, Shinoda J, et al., 2015, Evaluation of   Pulse Coupled Neural Network. Int J Imaging Syst Technol,
               Brain Models to Control a Robotic Origami arm Using   27: 57–65.
               Holographic Neural Networks.
                                                                  https://doi.org/10.1002/ima.22210
               https://doi.org/10.1115/detc2015-48074
                                                               17.  Jayanthi PR, Bommannaraja K, Manju R. 2017, Early
            8.   Kondo T, Ueno J, Takao S. 2015, Medical Image Diagnosis   Detection of Macular Edema in Fundus Image Datasets
               of Liver Cancer by Hybrid Feedback GMDH-type Neural   Using Neural Network.
               Network Using Principal Component-regression Analysis.
               Artif Life Robot, 20: 145–151.                  18.  Namozov A, Cho YI. 2018, Convolutional Neural Network
                                                                  Algorithm with Parameterized Activation Function for
               https://doi.org/10.1007/s10015-015-0213-1          Melanoma Classification. In: 2018 International Conference
            9.   Kondo T, Ueno J, Takao S. 2015, Logistic GMDH-type Neural   on  Information  and  Communication  Technology
               Network Using Principal Component-regression Analysis   Convergence (ICTC). p417–419.


            Volume 1 Issue 2 (2022)                         12                     https://doi.org/10.36922/gtm.v1i2.176
   56   57   58   59   60   61   62   63   64   65   66