Page 63 - GTM-1-2
P. 63

Global Translational Medicine                                      A Taxonomy of AI Assisted Medical Robots



               Indocyanine Green Fluorescence During Laparoscopy-  Tactile Sensitive Skin. ArXiv, abs/2203.12752.
               assisted  Gastric  Tube  Reconstruction:  First  Experience.      https://doi.org/10.1038/s42256-022-00487-3
               J Minim Access Surg, 17: 576–579.
                                                               51.  Kim TH, Bao C, Chen Z, et al. 3d Printed Leech-inspired
               https://doi.org/10.4103/jmas.jmas_210_20
                                                                  Origami  Dry  Electrodes  for  Electrophysiology  Sensing
            40.  Li X, Zhong J, Wang Y,  et  al., 2021, Rapid, Accurate,   Robots. npj Flex Electron, 6: 1–10.
               Multifunctional and Self-assisted Vision Assessment and
               Screening with Interactive Desktop Autostereoscopy.  Ann      https://doi.org/10.1038/s41528-022-00139-x
               Trans Med, 9: 23.                               52.  Lee S, Kim S, Kim S, et al., 2018, A Capsule-type Microrobot
               https://doi.org/10.21037/atm-20-3555               with Pick-and-drop Motion for Targeted Drug and Cell
                                                                  Delivery. Adv Healthc Mater, 7: 1700985.
            41.  Yin L, Wang Y, Zhan J,  et al., 2022, Chest-scale self-
               compensated  Epidermal  Electronics  for  Standard     https://doi.org/10.1002/adhm.201700985
               6-precordial-lead ECG. npj Flex Electron, 6: 1–9.   53.  Huaulmé A, Despinoy F, Perez SA, et al., 2019, Automatic
               https://doi.org/10.1038/s41528-022-00159-7         annotation of surgical activities using virtual reality
                                                                  environments.  Int J Comput Assist Radiol Surg, 14: 1663–
            42.  Shitiri E, Cho HS. 2021, A Tdma-based Data Gathering   1671.
               Protocol for Molecular Communication Via Diffusion-
               based Nano-sensor Networks. IEEE Sens J, 21: 19582–19595.     https://doi.org/10.1007/s11548-019-02008-x.
               https://doi.org/10.1109/jsen.2021.3091494       54.  Lu B, Chu HK, Huang KC, et al., 2019, Vision-based Surgical
                                                                  Suture Looping Through Trajectory Planning for Wound
            43.  Jahromi AM, Khedri M, Ghasemi M, et al., 2021, Molecular   Suturing. IEEE Trans Automa Sci Eng, 16: 542–556.
               Insight into COF Monolayers for Urea Sorption in Artificial
               Kidneys. Sci Rep, 11: 12085.                       https://doi.org/10.1109/tase.2018.2840532
               https://doi.org/10.1038/s41598-021-91617-1      55.  Borra D, Andalò A, Paci M, et al., 2020, A fully Automated
                                                                  Left Atrium Segmentation Approach from Late Gadolinium
            44.  Suzuki  H, Wood RJ.  2020, Origami-inspired miniature   Enhanced Magnetic Resonance Imaging Based on a
               manipulator for teleoperated microsurgery. Nat Mach Intell,    Convolutional Neural Network. Quant Imaging Med Surg,
               2: 437–446.
                                                                  10: 1894–1907.
               https://doi.org/10.1038/s42256-020-0203-4
                                                                  https://doi.org/10.21037/qims-20-168
            45.  Matsunaga T, Ohnishi K, Wada N, et al., 2019, Development
               of Small-diameter Haptic Flexible Gripping Forceps Robot.   56.  Wang J, Yue C, Wang G,  et al., 2022, Task Autonomous
               IEEE J Trans Ind Appl, 2019.                       Medical Robot for Both Incision Stapling and Staples
                                                                  Removal. IEEE Robot Autom Lett, 7: 3279–3285.
               https://doi.org/10.1002/eej.23269
                                                                  https://doi.org/10.1109/lra.2022.3141452
            46.  Kwak B, Choi S, Maeng J,  et al., 2021, Marangoni Effect
               Inspired Robotic Self-propulsion Over a Water Surface   57.  Zhang X, Wang J, Wang T, et al., 2019, A Markerless Automatic
               Using a Flow-imbibition-powered Microfluidic Pump.  Sci   Deformable Registration Framework for Augmented Reality
               Rep, 11: 1–13.                                     Navigation  of Laparoscopy  Partial  Nephrectomy.  Int J
                                                                  Comput Assist Radiol Surg, 14: 1285–1294.
               https://doi.org/10.1038/s41598-021-96553-8
                                                                  https://doi.org/10.1007/s11548-019-01974-6
            47.  Zhang Y, Yang J, Hou X, et al., 2022, Highly Stable Flexible
               Pressure Sensors with a Quasi-homogeneous Composition   58.  Hannaford B, Rosen J, Friedman DW, et al., 2013, Raven-ii:
               and Interlinked Interfaces. Nat Commun, 13: 1317.   An  Open  Platform  for  Surgical  Robotics  Research.  IEEE
                                                                  Trans Biomed Eng, 60: 954–959.
               https://doi.org/10.1038/s41467-022-29093-y
                                                                  https://doi.org/10.1109/tbme.2012.2228858
            48.  Barragan JA, Yang J, Yu D, et al., 2022, A Neurotechnological
               Aid for Semi-  autonomous Suction in Robotic-assisted   59.  Kazanzides P, Chen Z, Deguet A,  et al., 2014, An Open-
               Surgery. Sci Rep, 12: 4504.                        source Research Kit for the da Vinci® Surgical System.
                                                                  In:  2014 IEEE International Conference on Robotics and
               https://doi.org/10.21203/rs.3.rs-1021937/v1
                                                                  Automation (ICRA). p6434–6439.
            49.  Chun S, Kim JS, Yoo YH, et al., 2021, An Artificial Neural      https://doi.org/10.1109/icra.2014.6907809
               Tactile Sensing System. Nat Electron, 4: 429–438. https://doi.
               org/10.1038/s41928-021-00585-x                  60.  Steiner JA, Pham LN, Abbott JJ, et al., 2021, Modeling and
                                                                  Analysis of a Soft Endoluminal Inchworm Robot Propelled
            50.  Massari L, Fransvea G, D’Abbraccio J, et al., 2022, Functional
               Mimicry of Ruffini Receptors with Fiber Bragg Gratings and   by a Rotating Magnetic Dipole Field. J Mech Robot, 14: 11.
               Deep Neural Networks Enables a Bio-inspired Large-area      https://doi.org/10.1115/1.4053114


            Volume 1 Issue 2 (2022)                         14                     https://doi.org/10.36922/gtm.v1i2.176
   58   59   60   61   62   63   64   65   66   67   68