Page 63 - GTM-1-2
P. 63
Global Translational Medicine A Taxonomy of AI Assisted Medical Robots
Indocyanine Green Fluorescence During Laparoscopy- Tactile Sensitive Skin. ArXiv, abs/2203.12752.
assisted Gastric Tube Reconstruction: First Experience. https://doi.org/10.1038/s42256-022-00487-3
J Minim Access Surg, 17: 576–579.
51. Kim TH, Bao C, Chen Z, et al. 3d Printed Leech-inspired
https://doi.org/10.4103/jmas.jmas_210_20
Origami Dry Electrodes for Electrophysiology Sensing
40. Li X, Zhong J, Wang Y, et al., 2021, Rapid, Accurate, Robots. npj Flex Electron, 6: 1–10.
Multifunctional and Self-assisted Vision Assessment and
Screening with Interactive Desktop Autostereoscopy. Ann https://doi.org/10.1038/s41528-022-00139-x
Trans Med, 9: 23. 52. Lee S, Kim S, Kim S, et al., 2018, A Capsule-type Microrobot
https://doi.org/10.21037/atm-20-3555 with Pick-and-drop Motion for Targeted Drug and Cell
Delivery. Adv Healthc Mater, 7: 1700985.
41. Yin L, Wang Y, Zhan J, et al., 2022, Chest-scale self-
compensated Epidermal Electronics for Standard https://doi.org/10.1002/adhm.201700985
6-precordial-lead ECG. npj Flex Electron, 6: 1–9. 53. Huaulmé A, Despinoy F, Perez SA, et al., 2019, Automatic
https://doi.org/10.1038/s41528-022-00159-7 annotation of surgical activities using virtual reality
environments. Int J Comput Assist Radiol Surg, 14: 1663–
42. Shitiri E, Cho HS. 2021, A Tdma-based Data Gathering 1671.
Protocol for Molecular Communication Via Diffusion-
based Nano-sensor Networks. IEEE Sens J, 21: 19582–19595. https://doi.org/10.1007/s11548-019-02008-x.
https://doi.org/10.1109/jsen.2021.3091494 54. Lu B, Chu HK, Huang KC, et al., 2019, Vision-based Surgical
Suture Looping Through Trajectory Planning for Wound
43. Jahromi AM, Khedri M, Ghasemi M, et al., 2021, Molecular Suturing. IEEE Trans Automa Sci Eng, 16: 542–556.
Insight into COF Monolayers for Urea Sorption in Artificial
Kidneys. Sci Rep, 11: 12085. https://doi.org/10.1109/tase.2018.2840532
https://doi.org/10.1038/s41598-021-91617-1 55. Borra D, Andalò A, Paci M, et al., 2020, A fully Automated
Left Atrium Segmentation Approach from Late Gadolinium
44. Suzuki H, Wood RJ. 2020, Origami-inspired miniature Enhanced Magnetic Resonance Imaging Based on a
manipulator for teleoperated microsurgery. Nat Mach Intell, Convolutional Neural Network. Quant Imaging Med Surg,
2: 437–446.
10: 1894–1907.
https://doi.org/10.1038/s42256-020-0203-4
https://doi.org/10.21037/qims-20-168
45. Matsunaga T, Ohnishi K, Wada N, et al., 2019, Development
of Small-diameter Haptic Flexible Gripping Forceps Robot. 56. Wang J, Yue C, Wang G, et al., 2022, Task Autonomous
IEEE J Trans Ind Appl, 2019. Medical Robot for Both Incision Stapling and Staples
Removal. IEEE Robot Autom Lett, 7: 3279–3285.
https://doi.org/10.1002/eej.23269
https://doi.org/10.1109/lra.2022.3141452
46. Kwak B, Choi S, Maeng J, et al., 2021, Marangoni Effect
Inspired Robotic Self-propulsion Over a Water Surface 57. Zhang X, Wang J, Wang T, et al., 2019, A Markerless Automatic
Using a Flow-imbibition-powered Microfluidic Pump. Sci Deformable Registration Framework for Augmented Reality
Rep, 11: 1–13. Navigation of Laparoscopy Partial Nephrectomy. Int J
Comput Assist Radiol Surg, 14: 1285–1294.
https://doi.org/10.1038/s41598-021-96553-8
https://doi.org/10.1007/s11548-019-01974-6
47. Zhang Y, Yang J, Hou X, et al., 2022, Highly Stable Flexible
Pressure Sensors with a Quasi-homogeneous Composition 58. Hannaford B, Rosen J, Friedman DW, et al., 2013, Raven-ii:
and Interlinked Interfaces. Nat Commun, 13: 1317. An Open Platform for Surgical Robotics Research. IEEE
Trans Biomed Eng, 60: 954–959.
https://doi.org/10.1038/s41467-022-29093-y
https://doi.org/10.1109/tbme.2012.2228858
48. Barragan JA, Yang J, Yu D, et al., 2022, A Neurotechnological
Aid for Semi- autonomous Suction in Robotic-assisted 59. Kazanzides P, Chen Z, Deguet A, et al., 2014, An Open-
Surgery. Sci Rep, 12: 4504. source Research Kit for the da Vinci® Surgical System.
In: 2014 IEEE International Conference on Robotics and
https://doi.org/10.21203/rs.3.rs-1021937/v1
Automation (ICRA). p6434–6439.
49. Chun S, Kim JS, Yoo YH, et al., 2021, An Artificial Neural https://doi.org/10.1109/icra.2014.6907809
Tactile Sensing System. Nat Electron, 4: 429–438. https://doi.
org/10.1038/s41928-021-00585-x 60. Steiner JA, Pham LN, Abbott JJ, et al., 2021, Modeling and
Analysis of a Soft Endoluminal Inchworm Robot Propelled
50. Massari L, Fransvea G, D’Abbraccio J, et al., 2022, Functional
Mimicry of Ruffini Receptors with Fiber Bragg Gratings and by a Rotating Magnetic Dipole Field. J Mech Robot, 14: 11.
Deep Neural Networks Enables a Bio-inspired Large-area https://doi.org/10.1115/1.4053114
Volume 1 Issue 2 (2022) 14 https://doi.org/10.36922/gtm.v1i2.176

