Page 64 - GTM-1-2
P. 64

Global Translational Medicine                                      A Taxonomy of AI Assisted Medical Robots



            61.  Pham LN, Steiner JA, Leang KK,  et al., 2020, Soft   Synthetic Molecular Recognition Nanosensor Paint for
               Endoluminal Robots Propelled by Rotating Magnetic Dipole   Microalbuminuria. Nat Commun, 10: 3605.
               Fields. IEEE Trans Med Robot Bionic, 2: 598–607.
                                                                  https://doi.org/10.1038/s41467-019-11583-1
               https://doi.org/10.1109/tmrb.2020.3027871
                                                               71.  Siontis KC, Noseworthy PA, Attia ZI,  et al., 2021,
            62.  Kaouk JH, Haber GP, Goel RK, et al., 2010, Pure Natural   Artificial Intelligence-  enhanced Electrocardiography in
               Orifice Translumenal Endoscopic Surgery (Notes)    Cardiovascular Disease Management.  Nat Rev Cardiol,
               Transvaginal Nephrectomy. Eur Urol, 57: 723–726.   18: 465–478.
               https://doi.org/10.1016/j.eururo.2009.10.027       https://doi.org/10.1038/s41569-020-00503-2
            63.  Rahimy E, Wilson J, Tsao TC, et al., 2013, Robot-assisted   72.  Siontis KC, Noseworthy PA, Attia ZI,  et al., 2021,
               Intraocular Surgery: Development of the Iriss and Feasibility   Artificial Intelligence-  enhanced Electrocardiography in
               Studies in an Animal Model. Eye, 27: 972–978.      Cardiovascular Disease Management.  Nat Rev Cardiol,
               https://doi.org/10.1038/eye.2013.105               18: 465–478.
            64.  Wavhale R, Dhobale KD, Rahane CS, et al., 2021, Water-     https://doi.org/10.1038/s41569-020-00503-2
               powered Self-propelled Magnetic Nanobot for Rapid   73.  Hussein SE,  Chen P, Medeiros LJ,  et al., 2022, Artificial
               and Highly Efficient Capture of Circulating Tumor Cells.   Intelligence-assisted Mapping of Proliferation Centers
               Commun Chem, 4: 1–9.                               Allows the Distinction of Accelerated Phase from Large Cell
               https://doi.org/10.1038/s42004-021-00598-9         Transformation  in  Chronic  Lymphocytic  Leukemia.  Mod
                                                                  Pathol, 35: 1121–1125.
            65.  Shen T, Hennings DL, Nelson CA, et al., 2018, Performance
               of a Multifunctional Robot for Natural Orifice Transluminal      https://doi.org/10.1038/s41379-022-01015-9
               Endoscopic Surgery. Surg Innov, 25: 364–373.    74.  Bayoumy K, Gaber M, Elshafeey A,  et al., 2021, Smart
               https://doi.org/10.1177/1553350618781225           Wearable Devices in Cardiovascular Care: Where we are and
                                                                  How to Move Forward. Nat Rev Cardiol, 18: 581–599.
            66.  Shen T, Hennings DL, Nelson CA, et al., 2018, Performance
               of a Multifunctional Robot for Natural Orifice Transluminal      https://doi.org/10.1038/s41569-021-00522-7
               Endoscopic Surgery. Surg Innov, 25: 364–373.    75.  Himmelfarb J, Ratner B. 2020, Wearable Artificial Kidney:
               https://doi.org/10.1177/1553350618781225           Problems, Progress and Prospects.  Nat Rev Nephrol, 16: 
                                                                  558–559.
            67.  Bai W, Wang Z, Cao Q,  et al., 20225, Anthropomorphic
               Dual-arm Coordinated Control  for a  Single-port Surgical      https://doi.org/10.1038/s41581-020-0318-1
               Robot Based on Dual-step Optimization. IEEE Trans Med   76.  Mintchev S, Salerno M, Cherpillod A, et al., 2019, A Portable
               Robot Bionic, 4: 72–84.                            Three-degrees-of-freedom force Feedback Origami Robot
               https://doi.org/10.1109/tmrb.2022.3145673          for Human-robot Interactions. Nat Mach Intell, 1: 584–593.
            68.  Wang F, Toombs NJ, Kesavadas T, et al., 2019, Mechanical      https://doi.org/10.1038/s42256-019-0125-1
               Design and Modeling of a Manipulator Tool for a Compact   77.  Heiligenstein  X, Paul-Gilloteaux  P,  Belle  M,  et  al.,  2017,
               Multiple-tool Single Port Laparoscopic Robot Platform.   Ec-clem: Flexible Multidimensional Registration Software
               2019  41   Annual International Conference of the IEEE   for Correlative Microscopies with Refined Accuracy
                      st
               Engineering in Medicine and Biology Society (EMBC).   Mapping. Microsc Microanal, 23: 360–361.
               p5836–5841.
                                                                  https://doi.org/10.1017/s1431927617002483
               https://doi.org/10.1109/embc.2019.8857539
                                                               78.  Pore A, Corsi D, Marchesini E, et al., 2021, Safe Reinforcement
            69.  Hueso M, Navarro E, Sandoval D, et al., 2018, Progress in the   Learning Using Formal Verification for Tissue Retraction in
               Development and Challenges for the use of Artificial Kidneys   Autonomous Robotic-assisted Surgery. In: 2021 IEEE/RSJ
               and Wearable Dialysis Devices. Kidney Dis (Basel), 5: 3–10.
                                                                  International Conference on Intelligent Robots and Systems
               https://doi.org/10.1159/000492932                  (IROS). p4025–4031.
            70.  Budhathoki-Uprety J, Shah J, Korsen JA,  et al.      https://doi.org/10.1109/iros51168.2021.9636175












            Volume 1 Issue 2 (2022)                         15                     https://doi.org/10.36922/gtm.v1i2.176
   59   60   61   62   63   64   65   66   67   68   69