Page 62 - GTM-1-2
P. 62

Global Translational Medicine                                      A Taxonomy of AI Assisted Medical Robots



               https://doi.org/10.1109/ictc.2018.8539451          https://doi.org/10.1038/s41467-020-19693-x

            19.  Qamar S, Jin H, Zheng R,  et al., 2018, 3d Hyper-dense   29.  Shafiei SB, Lone Z, Elsayed AS,  et al., 2020, Identifying
               Connected Convolutional Neural Network for Brain Tumor   Mental Health Status Using Deep Neural Network Trained
               Segmentation. In: 2018  14   International Conference on   by Visual Metrics. Trans Psychiatry, 10: 430.
                                   th
               Semantics, Knowledge and Grids (SKG). p123–130.      https://doi.org/10.1038/s41398-020-01117-5
               https://doi.org/10.1109/skg.2018.00024          30.  Fu F, Wei J, Zhang M, et al., 2020, Rapid Vessel Segmentation
            20.  Lu Y, Yu Q, Gao Y, et al., 2018, Identification of Metastatic   and Reconstruction of Head and Neck Angiograms Using
               Lymph Nodes in MR Imaging with Faster Region-Based   3d Convolutional Neural Network. Nat Commun, 11: 4829.
               Convolutional Neural Networks. Cancer Res, 78: 5135–5143.     https://doi.org/10.1038/s41467-020-18606-2
               https://doi.org/10.1158/0008-5472.can-18-0494   31.  Ribeiro AH, Ribeiro MH, Paixão GM, et al., 2020, Automatic
            21.  Alom MZ, Yakopcic C, Taha T,  et al., 2018, Nuclei   Diagnosis of the 12-lead ECG Using a Deep Neural Network.
               Segmentation with Recurrent Residual Convolutional   Nat Commun, 11: 1760.
               Neural Networks based U-Net (R2U-Net). In: NAECON      https://doi.org/10.1038/s41467-020-15432-4
               2018- IEEE National Aerospace and Electronics Conference.   32.  Noyan MA, Durdu M, Eskiocak AH. 2020, Tzancknet:
               p228-233.
                                                                  A  Convolutional Neural Network to Identify Cells in the
               https://doi.org/10.1109/naecon.2018.8556686        Cytology  of  Erosive-vesiculobullous  Diseases.  Sci  Rep,
                                                                  10: 18314.
            22.  Sim Y, Chung MJ, Kotter E, et al., 2019. Deep Convolutional
               Neural Network-based Software Improves Radiologist      https://doi.org/10.1101/2020.06.22.20137570
               Detection of Malignant Lung Nodules on Chest Radiographs.   33.  Le Page AL, Ballot E, Truntzer C,  et al., 2021, Using
               Radiology, 294: 182465.                            a Convolutional Neural Network for Classification of
               https://doi.org/10.1148/radiol.2019182465          Squamous and Non-squamous Non-small Cell Lung Cancer
                                                                  Based on Diagnostic Histopathology Hes Images. Sci Rep,
            23.  Pratt  H,  Coenen  F,  Harding  SP,  et al.,  2019,  Feature   11: 23912.
               Visualisation of Classification of Diabetic Retinopathy Using
               a Convolutional Neural Network. In: CEUR Workshop      https://doi.org/10.21203/rs.3.rs-646715/v1
               Proceedings. p23–29.                            34.  Kanakasabapathy MK, Thirumalaraju P, Kandula H,
            24.  Parakh A, Lee H, Lee JH, et al., 2019, Urinary Stone Detection   et al., 2021, Adaptive Adversarial Neural Networks for the
               on ct Images Using Deep Convolutional Neural Networks:   Analysis of Lossy and Domain-shifted Datasets of Medical
               Evaluation of Model Performance and Generalization.   Images. Nat Biomed Engin, 5: 571–585.
               Radiology. Artif Intell, 1: e180066.               https://doi.org/10.1038/s41551-021-00733-w
               https://doi.org/10.1148/ryai.2019180066         35.  Elmarakeby HA, Hwang JH, Arafeh R,  et al., 2021,
            25.  Yin C, Qian B, Wei J,  et al., 2019, Automatic Generation   Biologically Informed Deep Neural Network for Prostate
               Of Medical Imaging Diagnostic Report with Hierarchical   Cancer Discovery. Nature, 598: 348–352.
               Recurrent  Neural  Network.  In: 2019  IEEE  International      https://doi.org/10.1038/s41586-021-03922-4
               Conference on Data Mining (ICDM). p728–737.
                                                               36.  Lu H, Uddin S. 2021, A Weighted Patient Network-based
               https://doi.org/10.1109/icdm.2019.00083            Framework for Predicting Chronic Diseases Using  Graph
                                                                  Neural Networks. Sci Rep, 11: 22607.
            26.  Zhang K, Zhou X, Wu J. 2019, U-module: Better Parameters
               Initialization of Convolutional Neural Network for      https://doi.org/10.1038/s41598-021-01964-2
               Medical Image Classification. In: 2019 IEEE International   37.  Ahmed S, Muhammod R, Khan Z,  et al., 2020, Acp-
               Conference on Image Processing (ICIP). p799–803.   MHCNN: An  Accurate Multi-headed Deep-convolutional
               https://doi.org/10.1109/icip.2019.8803799          Neural  Network  to  Predict  Anticancer  Peptides.  Sci Rep,
                                                                  11: 313668.
            27.  Lee H, Jang M, Kim HC, et al., 2019, Association of Imaging
               Factors Derived from Convolutional Neural Network with      https://doi.org/10.1101/2020.09.25.313668
               Visual Outcomes in Age-related Macular degeneration and   38.  Xu W, Zhang H, Yuan H, et al., 2021, A Compliant Adaptive
               Polypoidal Choroidal Vasculopathy. Sci Rep, 9: 1–9.   Gripper and its Intrinsic Force Sensing Method. IEEE Trans
               https://doi.org/10.1038/s41598-019-56420-z         Robot, 37: 1584–1603.
            28.  Weng J, Ding YJ, Hu C, et al. Meta-neural-network for Real-     https://doi.org/10.1109/tro.2021.3060971
               time and Passive Deep-Learning-based Object Recognition.   39.  Ebihara Y, Shichinohe T, Kurashima Y,  et al., 2021,
               Nat Commun, 11: 6309.                              Laparoscopic  Real-time  Vessel  Navigation  Using


            Volume 1 Issue 2 (2022)                         13                     https://doi.org/10.36922/gtm.v1i2.176
   57   58   59   60   61   62   63   64   65   66   67