Page 62 - GTM-1-2
P. 62
Global Translational Medicine A Taxonomy of AI Assisted Medical Robots
https://doi.org/10.1109/ictc.2018.8539451 https://doi.org/10.1038/s41467-020-19693-x
19. Qamar S, Jin H, Zheng R, et al., 2018, 3d Hyper-dense 29. Shafiei SB, Lone Z, Elsayed AS, et al., 2020, Identifying
Connected Convolutional Neural Network for Brain Tumor Mental Health Status Using Deep Neural Network Trained
Segmentation. In: 2018 14 International Conference on by Visual Metrics. Trans Psychiatry, 10: 430.
th
Semantics, Knowledge and Grids (SKG). p123–130. https://doi.org/10.1038/s41398-020-01117-5
https://doi.org/10.1109/skg.2018.00024 30. Fu F, Wei J, Zhang M, et al., 2020, Rapid Vessel Segmentation
20. Lu Y, Yu Q, Gao Y, et al., 2018, Identification of Metastatic and Reconstruction of Head and Neck Angiograms Using
Lymph Nodes in MR Imaging with Faster Region-Based 3d Convolutional Neural Network. Nat Commun, 11: 4829.
Convolutional Neural Networks. Cancer Res, 78: 5135–5143. https://doi.org/10.1038/s41467-020-18606-2
https://doi.org/10.1158/0008-5472.can-18-0494 31. Ribeiro AH, Ribeiro MH, Paixão GM, et al., 2020, Automatic
21. Alom MZ, Yakopcic C, Taha T, et al., 2018, Nuclei Diagnosis of the 12-lead ECG Using a Deep Neural Network.
Segmentation with Recurrent Residual Convolutional Nat Commun, 11: 1760.
Neural Networks based U-Net (R2U-Net). In: NAECON https://doi.org/10.1038/s41467-020-15432-4
2018- IEEE National Aerospace and Electronics Conference. 32. Noyan MA, Durdu M, Eskiocak AH. 2020, Tzancknet:
p228-233.
A Convolutional Neural Network to Identify Cells in the
https://doi.org/10.1109/naecon.2018.8556686 Cytology of Erosive-vesiculobullous Diseases. Sci Rep,
10: 18314.
22. Sim Y, Chung MJ, Kotter E, et al., 2019. Deep Convolutional
Neural Network-based Software Improves Radiologist https://doi.org/10.1101/2020.06.22.20137570
Detection of Malignant Lung Nodules on Chest Radiographs. 33. Le Page AL, Ballot E, Truntzer C, et al., 2021, Using
Radiology, 294: 182465. a Convolutional Neural Network for Classification of
https://doi.org/10.1148/radiol.2019182465 Squamous and Non-squamous Non-small Cell Lung Cancer
Based on Diagnostic Histopathology Hes Images. Sci Rep,
23. Pratt H, Coenen F, Harding SP, et al., 2019, Feature 11: 23912.
Visualisation of Classification of Diabetic Retinopathy Using
a Convolutional Neural Network. In: CEUR Workshop https://doi.org/10.21203/rs.3.rs-646715/v1
Proceedings. p23–29. 34. Kanakasabapathy MK, Thirumalaraju P, Kandula H,
24. Parakh A, Lee H, Lee JH, et al., 2019, Urinary Stone Detection et al., 2021, Adaptive Adversarial Neural Networks for the
on ct Images Using Deep Convolutional Neural Networks: Analysis of Lossy and Domain-shifted Datasets of Medical
Evaluation of Model Performance and Generalization. Images. Nat Biomed Engin, 5: 571–585.
Radiology. Artif Intell, 1: e180066. https://doi.org/10.1038/s41551-021-00733-w
https://doi.org/10.1148/ryai.2019180066 35. Elmarakeby HA, Hwang JH, Arafeh R, et al., 2021,
25. Yin C, Qian B, Wei J, et al., 2019, Automatic Generation Biologically Informed Deep Neural Network for Prostate
Of Medical Imaging Diagnostic Report with Hierarchical Cancer Discovery. Nature, 598: 348–352.
Recurrent Neural Network. In: 2019 IEEE International https://doi.org/10.1038/s41586-021-03922-4
Conference on Data Mining (ICDM). p728–737.
36. Lu H, Uddin S. 2021, A Weighted Patient Network-based
https://doi.org/10.1109/icdm.2019.00083 Framework for Predicting Chronic Diseases Using Graph
Neural Networks. Sci Rep, 11: 22607.
26. Zhang K, Zhou X, Wu J. 2019, U-module: Better Parameters
Initialization of Convolutional Neural Network for https://doi.org/10.1038/s41598-021-01964-2
Medical Image Classification. In: 2019 IEEE International 37. Ahmed S, Muhammod R, Khan Z, et al., 2020, Acp-
Conference on Image Processing (ICIP). p799–803. MHCNN: An Accurate Multi-headed Deep-convolutional
https://doi.org/10.1109/icip.2019.8803799 Neural Network to Predict Anticancer Peptides. Sci Rep,
11: 313668.
27. Lee H, Jang M, Kim HC, et al., 2019, Association of Imaging
Factors Derived from Convolutional Neural Network with https://doi.org/10.1101/2020.09.25.313668
Visual Outcomes in Age-related Macular degeneration and 38. Xu W, Zhang H, Yuan H, et al., 2021, A Compliant Adaptive
Polypoidal Choroidal Vasculopathy. Sci Rep, 9: 1–9. Gripper and its Intrinsic Force Sensing Method. IEEE Trans
https://doi.org/10.1038/s41598-019-56420-z Robot, 37: 1584–1603.
28. Weng J, Ding YJ, Hu C, et al. Meta-neural-network for Real- https://doi.org/10.1109/tro.2021.3060971
time and Passive Deep-Learning-based Object Recognition. 39. Ebihara Y, Shichinohe T, Kurashima Y, et al., 2021,
Nat Commun, 11: 6309. Laparoscopic Real-time Vessel Navigation Using
Volume 1 Issue 2 (2022) 13 https://doi.org/10.36922/gtm.v1i2.176

