Page 82 - IJAMD-2-3
P. 82

International Journal of AI for
            Materials and Design                                          Optimization of membrane shrinkage and stability



               Mater Res. 2024;5(8):987-999.                      and prestrain via finite element analysis.  Fibers Polym.
                                                                  2023;24(2):525-536.
               doi: 10.1021/accountsmr.4c00145
                                                                  doi: 10.1007/s12221-023-00133-8
            4.   Yadav S, Sharma A, Kurmi BD,  et al. Nanofiber drug
               delivery systems: Recent advances in nanofabrication and   15.  Ahmadi Bonakdar M, Rodrigue D. Electrospinning: Processes,
               their role in targeted therapy in cancer, neurodegenerative,   structures, and materials. Macromol. 2024;4(1):58-103.
               and cardiovascular diseases.  Polym Adv Technol.      doi: 10.3390/macromol4010004
               2025;36(5):e70198.
                                                               16.  El Ferik S, Adeniran AA. Modeling and identification
               doi: 10.1002/pat.70198
                                                                  of nonlinear systems: A  review of the multimodel
            5.   Wang Z, Gao C, Yang R, Xiong F. The interface effect of   approach-Part  2.  IEEE Trans Syst Man Cybern Syst.
               electrospun fiber promotes wound healing. Macromol Rapid   2016;47(7):1160-1168.
               Commun. 2025:2500038.
                                                                  doi: 10.1109/TSMC.2016.2560129
               doi: 10.1002/marc.202500038
                                                               17.  Subeshan B, Atayo A, Asmatulu E. Machine learning
            6.   Wang J, You C, Xu Y, Xie T, Wang Y. Research advances in   applications for electrospun nanofibers: A review. J Mater
               electrospun nanofiber membranes for non-invasive medical   Sci. 2024;59(31):14095-14140.
               applications. Micromachines. 2024;15(10):1226.
                                                                  doi: 10.1007/s10853-024-09994-7
               doi: 10.3390/mi15101226
                                                               18.  Shastry T, Basdogan Y, Wang ZG, Kunmar SK, Carbone MR.
            7.   Wu H, Zheng Y, Zeng Y. Fabrication of helical nanofibers via   Machine learning-based discovery of molecular descriptors
               co-electrospinning. Ind Eng Chem Res. 2015;54(3):987-993.  that control polymer gas permeation.  J  Membr Sci.
                                                                  2024;697:122563.
               doi: 10.1021/ie504305s
                                                                  doi: 10.1016/j.memsci.2024.122563
            8.   Zhao Y, Miao X, Lin J, et al. Coiled plant tendril bioinspired
               fabrication  of  helical  porous  microfibers  for  crude  oil   19.  Ignacz G, Beke AK, Toth V, Szekely G. A hybrid modelling
               cleanup. Glob Challenges. 2017;1(3):1600021.       approach to compare chemical separation technologies in
                                                                  terms of energy consumption and carbon dioxide emissions.
               doi: 10.1002/gch2.201600021
                                                                  Nat Energy. 2025;10(3):308-317.
            9.   Wang  M,  Li  W,  Tang  G,  Garciamendez  Mijares  CE,
               Zhang YS. Engineering (bio) materials through shrinkage      doi: 10.1038/s41560-024-01668-7
               and expansion. Adv Healthc Mater. 2021;10(14):2100380.  20.  Lee S, Shirts MR, Straub AP. Molecular fingerprint-aided
                                                                  prediction of organic solute rejection in reverse osmosis and
               doi: 10.1002/adhm.202100380
                                                                  nanofiltration. J Membr Sci. 2024;705:122927.
            10.  Mandal A, Chatterjee K. 4D printing for biomedical
               applications. J Mater Chem B. 2024;12(12):2985-3005.     doi: 10.1016/j.memsci.2024.122927
                                                               21.  He S, Wang Y, Zhang Z, et al. Interpretable machine learning
               doi: 10.1039/D4TB00006D
                                                                  workflow for evaluation of the transformation temperatures
            11.  Fang F, Wang H, Wang H,  et al. Stimulus-responsive   of TiZrHfNiCoCu high entropy shape memory alloys. Mater
               shrinkage  in  electrospun  membranes:  Fundamentals  and   Des. 2023;225:111513.
               control. Micromachines. 2021;12(8):920.
                                                                  doi: 10.1016/j.matdes.2022.111513
               doi: 10.3390/mi12080920
                                                               22.  He SY, Xiao F, Hou RH,  et al. Accelerated learning and
            12.  Zaarour  B,  Liu  W,  Omran  W,  et  al.  A  mini-review   co-optimization of elastocaloric effect and stress hysteresis
               on wrinkled nanofibers: Preparation principles via   of elastocaloric alloys. Rare Met. 2024;43(12):6606-6624.
               electrospinning and potential applications.  J  Ind Text.
               2024;54:15280837241255396.                         doi: 10.1007/s12598-024-02827-1
                                                               23.  Rigatti SJ. Random forest. J Insur Med. 2017;47(1):31-39.
               doi: 10.1177/15280837241255396
                                                                  doi: 10.17849/insm-47-01-31-39.1
            13.  Wang CC, Zhao Y, Purnawali H, Huang WM, Sun L.
               Chemically induced morphing in polyurethane shape   24.  Osman AIA, Ahmed AN, Chow MF, Huang YF, EI-Shafle A.
               memory polymer micro fibers/springs. React Funct Polym.   Extreme gradient boosting (Xgboost) model to predict the
               2012;72:757-764.                                   groundwater levels in Selangor Malaysia. Ain Shams Eng J.
                                                                  2021;12(2):1545-1556.
               doi: 10.1016/j.reactfunctpolym.2012.07.013
                                                                  doi: 10.1016/j.asej.2020.11.011
            14.  Aadithiya D, Fang FY, Wang H, Huang WM.
               Stimulus-induced shrinkage in electrospun polymeric   25.  Zou J, Han Y, So SS. Overview of artificial neural networks.
               fibres: An investigation on thickness of prestretched shell   In:  Artificial Neural Networks: Methods and Applications.


            Volume 2 Issue 3 (2025)                         76                        doi: 10.36922/IJAMD025260022
   77   78   79   80   81   82   83   84   85   86   87