Page 82 - IJAMD-2-3
P. 82
International Journal of AI for
Materials and Design Optimization of membrane shrinkage and stability
Mater Res. 2024;5(8):987-999. and prestrain via finite element analysis. Fibers Polym.
2023;24(2):525-536.
doi: 10.1021/accountsmr.4c00145
doi: 10.1007/s12221-023-00133-8
4. Yadav S, Sharma A, Kurmi BD, et al. Nanofiber drug
delivery systems: Recent advances in nanofabrication and 15. Ahmadi Bonakdar M, Rodrigue D. Electrospinning: Processes,
their role in targeted therapy in cancer, neurodegenerative, structures, and materials. Macromol. 2024;4(1):58-103.
and cardiovascular diseases. Polym Adv Technol. doi: 10.3390/macromol4010004
2025;36(5):e70198.
16. El Ferik S, Adeniran AA. Modeling and identification
doi: 10.1002/pat.70198
of nonlinear systems: A review of the multimodel
5. Wang Z, Gao C, Yang R, Xiong F. The interface effect of approach-Part 2. IEEE Trans Syst Man Cybern Syst.
electrospun fiber promotes wound healing. Macromol Rapid 2016;47(7):1160-1168.
Commun. 2025:2500038.
doi: 10.1109/TSMC.2016.2560129
doi: 10.1002/marc.202500038
17. Subeshan B, Atayo A, Asmatulu E. Machine learning
6. Wang J, You C, Xu Y, Xie T, Wang Y. Research advances in applications for electrospun nanofibers: A review. J Mater
electrospun nanofiber membranes for non-invasive medical Sci. 2024;59(31):14095-14140.
applications. Micromachines. 2024;15(10):1226.
doi: 10.1007/s10853-024-09994-7
doi: 10.3390/mi15101226
18. Shastry T, Basdogan Y, Wang ZG, Kunmar SK, Carbone MR.
7. Wu H, Zheng Y, Zeng Y. Fabrication of helical nanofibers via Machine learning-based discovery of molecular descriptors
co-electrospinning. Ind Eng Chem Res. 2015;54(3):987-993. that control polymer gas permeation. J Membr Sci.
2024;697:122563.
doi: 10.1021/ie504305s
doi: 10.1016/j.memsci.2024.122563
8. Zhao Y, Miao X, Lin J, et al. Coiled plant tendril bioinspired
fabrication of helical porous microfibers for crude oil 19. Ignacz G, Beke AK, Toth V, Szekely G. A hybrid modelling
cleanup. Glob Challenges. 2017;1(3):1600021. approach to compare chemical separation technologies in
terms of energy consumption and carbon dioxide emissions.
doi: 10.1002/gch2.201600021
Nat Energy. 2025;10(3):308-317.
9. Wang M, Li W, Tang G, Garciamendez Mijares CE,
Zhang YS. Engineering (bio) materials through shrinkage doi: 10.1038/s41560-024-01668-7
and expansion. Adv Healthc Mater. 2021;10(14):2100380. 20. Lee S, Shirts MR, Straub AP. Molecular fingerprint-aided
prediction of organic solute rejection in reverse osmosis and
doi: 10.1002/adhm.202100380
nanofiltration. J Membr Sci. 2024;705:122927.
10. Mandal A, Chatterjee K. 4D printing for biomedical
applications. J Mater Chem B. 2024;12(12):2985-3005. doi: 10.1016/j.memsci.2024.122927
21. He S, Wang Y, Zhang Z, et al. Interpretable machine learning
doi: 10.1039/D4TB00006D
workflow for evaluation of the transformation temperatures
11. Fang F, Wang H, Wang H, et al. Stimulus-responsive of TiZrHfNiCoCu high entropy shape memory alloys. Mater
shrinkage in electrospun membranes: Fundamentals and Des. 2023;225:111513.
control. Micromachines. 2021;12(8):920.
doi: 10.1016/j.matdes.2022.111513
doi: 10.3390/mi12080920
22. He SY, Xiao F, Hou RH, et al. Accelerated learning and
12. Zaarour B, Liu W, Omran W, et al. A mini-review co-optimization of elastocaloric effect and stress hysteresis
on wrinkled nanofibers: Preparation principles via of elastocaloric alloys. Rare Met. 2024;43(12):6606-6624.
electrospinning and potential applications. J Ind Text.
2024;54:15280837241255396. doi: 10.1007/s12598-024-02827-1
23. Rigatti SJ. Random forest. J Insur Med. 2017;47(1):31-39.
doi: 10.1177/15280837241255396
doi: 10.17849/insm-47-01-31-39.1
13. Wang CC, Zhao Y, Purnawali H, Huang WM, Sun L.
Chemically induced morphing in polyurethane shape 24. Osman AIA, Ahmed AN, Chow MF, Huang YF, EI-Shafle A.
memory polymer micro fibers/springs. React Funct Polym. Extreme gradient boosting (Xgboost) model to predict the
2012;72:757-764. groundwater levels in Selangor Malaysia. Ain Shams Eng J.
2021;12(2):1545-1556.
doi: 10.1016/j.reactfunctpolym.2012.07.013
doi: 10.1016/j.asej.2020.11.011
14. Aadithiya D, Fang FY, Wang H, Huang WM.
Stimulus-induced shrinkage in electrospun polymeric 25. Zou J, Han Y, So SS. Overview of artificial neural networks.
fibres: An investigation on thickness of prestretched shell In: Artificial Neural Networks: Methods and Applications.
Volume 2 Issue 3 (2025) 76 doi: 10.36922/IJAMD025260022

