Page 83 - IJAMD-2-3
P. 83

International Journal of AI for
            Materials and Design                                          Optimization of membrane shrinkage and stability



               Springer; 2009.                                    Proceedings of the 2008 Winter Simulation Conference; 2008.
               doi: 10.1007/978-1-60327-101-1_2                   doi: 10.1109/WSC.2008.4736059
            26.  Su X, Yan X, Tsai CL. Linear regression. Wiley Interdiscip Rev   36.  Kroese DP, Rubinstein RY. Monte carlo methods.  Wiley
               Comput Stat. 2012;4(3):275-294.                    Interdiscip Rev Comput Stat. 2012;4(1):48-58.
               doi: 10.1002/wics.1198                             doi: 10.3390/nano15020117
            27.  Mosca E, Szigeti F, Tragianni S, Gallagher D, Groh G.   37.  Kroese DP, Brereton T, Taimre T, et al. Why the Monte Carlo
               SHAP-based explanation methods: A  review for NLP   method is so important today. Wiley Interdiscip Rev Comput
               interpretability. In:  Proceedings of the 29   International   Stat. 2014;6(6):386-392.
                                               th
               Conference on Computational Linguistics; 2022.
                                                                  doi: 10.1002/wics.1314
               doi: 2022.coling-1.406
                                                               38.  Gao H, He W, Zhao YB, Opris DM, Xu G, Wang J. Electret
            28.  Antwarg L, Miller R M, Shapira B, Rokach L. Explaining   mechanisms  and  kinetics  of  electrospun  nanofiber
               anomalies detected by autoencoders using Shapley Additive   membranes and lifetime in filtration applications in
               Explanations. Expert Syst Appl. 2021;186:115736.   comparison with corona charged membranes. J Membr Sci.
               doi: 10.1016/j.eswa.2021.115736                    2020;600:117879.
            29.  Van  den  Broeck  G,  Lykov  A,  Schleich  M,  Suciu  D.  On      doi: 10.1016/j.memsci.2020.117879
               the  tractability of  SHAP explanations.  J  Artif Intell Res.   39.  Tong  HW,  Wang  M.  Electrospinning  of  fibrous  polymer
               2022;74:851-886.                                   scaffolds using positive voltage or negative voltage:
               doi: 10.1613/jair.1.13283                          A comparative study. Biomed Mater. 2010;5(5):054110.
            30.  Li Z. Extracting spatial effects from machine learning model      doi: 10.1088/1748-6041/5/5/054110
               using local interpretation method: An example of SHAP and   40.  Liao Y, Wang R, Tian M, Qiu C, Fane AG. Fabrication of
               XGBoost. Comput Environ Urban Syst. 2022;96:101845.  polyvinylidene fluoride (PVDF) nanofiber membranes by
               doi: 10.1016/j.compenvurbsys.2022.101845           electro spinning for direct contact membrane  distillation.
                                                                  J Membr Sci. 2013;425:30-39.
            31.  Zhang J, Ma X, Zhang J,  et al. Insights into geospatial
               heterogeneity of landslide susceptibility based on the SHAP      doi: 10.1016/j.memsci.2012.09.023
               XGBoost model. J Environ Manag. 2023;332:117357.  41.  Mi HY, Jing X, Jacques BR, Turng LS, Peng XF.
               doi: 10.1016/j.jenvman.2023.117357                 Characterization  and  properties  of  electrospun
                                                                  thermoplastic polyurethane blend fibers: Effect of solution
            32.  Wang H, Liang Q, Hancock JT, Khoshgoftaar TM. Feature   rheological properties on fiber formation.  J  Mater Res.
               selection strategies: A comparative analysis of SHAP value   2013;28(17):2339-2350.
               and importance based methods. J Big Data. 2024;11(1):44.
                                                                  doi: 10.1016/j.memsci.2012.09.023
               doi: 10.1186/s40537-024-00905-w
                                                               42.  Lem KW, Haw JR, Curran S, et al. Effect of hard segment
            33.  Harrison RL. Introduction to monte carlo simulation. AIP   molecular weight on dilute solution properties of ether based
               Conf Proc. 2010;1204:17.
                                                                  thermoplastic polyurethanes. Spectroscopy. 2013;1:11-18.
               doi: 10.1063/1.3295638
                                                                  doi: 10.13189/nn.2013.01030
            34.  Metropolis N, Ulam S. The monte carlo method. J Am Stat   43.  Awad M, Khanna R. Support vector regression. In: Efficient
               Assoc. 1949;44(247):335-341.                       Learning Machines: Theories, Concepts, and Applications for
               doi: 10.2307/2280232                               Engineers and System Designers. Springer; 2015.
            35.  Raychaudhuri S. Introduction to monte carlo simulation. In:      doi: 10.1007/978-1-4302-5990-9

















            Volume 2 Issue 3 (2025)                         77                        doi: 10.36922/IJAMD025260022
   78   79   80   81   82   83   84   85   86   87   88