Page 79 - IJB-1-1
P. 79

Mohammad Vaezi and Shoufeng Yang

              13.  Tan K H, Chua C K, Leong K F, et al. 2005, Fabrication   http://dx.doi.org/10.1007/s10934-011-9501-x.
                 and    characterization  of  three-dimensional   24.  Yang H,  Yang S, Chi X,   et al.  2006,  Fine ceramic
                 poly(ether-ether-ketone)/-hydroxyapatite biocomposite   lattices prepared  by extrusion freeforming.  Journal  of
                 scaffolds  using laser sintering.  Proceedings  of  the   Biomedical Materials Research Part B: Applied
                 Institution of Mechanical Engineers, Part H: Journal of   Biomaterials, vol.79B(1): 116–121.
                 Engineering in Medicine, vol.219(3): 183–194.      http://dx.doi.org/10.1002/jbm.b.30520.
                 http://dx.doi.org/10.1243/095441105x9345.      25.  Yang H  Y,  Thompson I, Yang S  F,  et al.  2008,
              14.  Schmidt M,  Pohle D and Rechtenwald T,  2007,    Dissolution characteristics  of extrusion freeformed
                 Selective laser sintering of PEEK.  CIRP Annals-   hydroxyapatite–tricalcium phosphate scaffolds. Journal
                 Manufacturing Technology, vol.56(1): 205–208.      of Materials Science: Materials in Medicine, vol.19(11):
                 http://dx.doi.org/10.1016/j.cirp.2007.05.097.      3345–3353.
              15.  Yang S, Yang H, Chi X, et al. 2008. Rapid prototyping   http://dx.doi.org/10.1007/s10856-008-3473-7.
                 of ceramic lattices for hard tissue scaffolds. Materials &   26.  Jaekel D  J, Macdonald D  W  and Kurtz S  M,  2011,
                 Design, vol.29(9): 1802–1809.                      Characterization of PEEK biomaterials using the small
                 http://dx.doi.org/10.1016/j.matdes.2008.03.024.    punch test.  Journal  of  the Mechanical Behavior  of
              16.  Lu X S, Lee Y J, Yang S F, et al. 2009, Fabrication of   Biomedical Materials, vol.4(7): 1275–1282.
                 millimeter-wave electromagnetic bandgap crystals using   http://dx.doi.org/10.1016/j.jmbbm.2011.04.014.
                 microwave dielectric powders. Journal of the American   27.  Nieminen T, Kallela I,  Wuolijoki E,  et al.  2008,
                 Ceramic Society, vol.92(2): 371–378.               Amorphous  and crystalline polyetheretherketone:
                 http://dx.doi.org/10.1111/j.1551-2916.2008.02907.x.   mechanical properties  and tissue reactions during a
              17.  Lu X S, Lee Y J, Yang S F, et al. 2010, Solvent-based   3-year follow-up.  Journal  of Biomedical  Materials
                 paste extrusion solid freeforming.  Journal  of  the   Research Part A, vol.84A(2): 377–383.
                 European Ceramic Society, vol.30(1): 1–10.
                 http://dx.doi.org/10.1016/j.jeurceramsoc.2009.07.019.   http://dx.doi.org/10.1002/jbm.a.31310.
              18.  Lu X  S, Lee Y  J, Yang S  F,  et al.  2009,  Extrusion   28.  Conrad T L, Jaekel D J, Kurtz S M, et al. 2013, Effects
                 freeforming  of millimeter-wave  electromagnetic band-  of the mold temperature  on the mechanical properties
                 gap (EBG) photonic crystals.  Tsinghua Science  and   and crystallinity  of hydroxyapatite whisker-reinforced
                 Technology, vol.14(S1): 168–174.                   polyetheretherketone scaffolds.  Journal  of Biomedical
                 http://dx.doi.org/10.1016/S1007-0214(09)70087-2.   Materials Research Part B:  Applied Biomaterials,
              19.  Lu X  S, Lee Y  J, Yang S  F,  et al.  2009,  Fine lattice   vol.101B(4): 576–583.
                 structures fabricated by extrusion freeforming: Process   http://dx.doi.org/10.1002/jbm.b.32859.
                 variables. Journal of Materials Processing Technology,   29.  Yang H  Y, Chi X  P, Yang S,  et al.  2010,  Mechanical
                 vol.209(10): 4654–4661.                            strength  of extrusion freeformed calcium phosphate
                 http://dx.doi.org/10.1016/j.jmatprotec.2008.11.039.   filaments.  Journal  of Materials Science: Materials  in
              20.  Lu X  S, Lee Y  J, Yang S  F,  et al. 2009.  Extrusion   Medicine, vol.21(5): 1503–1510.
                 freeforming of  millimeter  wave  electromagnetic  band-  http://dx.doi.org/10.1007/s10856-010-4009-5.
                 gap (EBG)  structures.  Rapid Prototyping Journal, vol.   30.  Luo H L, Xiong G Y, Yang Z W, et al. 2014, Preparation
                 15(1): 42–51.                                      of three-dimensional braided carbon fiber-reinforced
                 http://dx.doi.org/10.1108/13552540910925054.       PEEK  composites for potential load-bearing bone
              21.  Lu X S, Lee Y J, Yang S F, et al. 2008, Fabrication of   fixations. Part  I. Mechanical properties  and  cytocom-
                 electromagnetic crystals by extrusion freeforming.   patibility.  Journal of  the Mechanical Behavior  of
                 Metamaterials, vol.2(1): 36–44.                    Biomedical Materials, vol.29: 103–113.
                 http://dx.doi.org/10.1016/j.metmat.2007.12.001.    http://dx.doi.org/10.1016/j.jmbbm.2013.09.003.
              22.  Yang  H  Y, Yang S  F,  Chi X  P,  et al.  2008,  Sintering   31.  Tai N  H, Ma C  C  M and Wu S  H,  1995, Fatigue
                 behaviour  of calcium phosphate filaments  for  use  as   behaviour  of carbon fibre/PEEK  laminate composites.
                 hard tissue scaffolds. Journal of the European Ceramic   Composites, vol.26(8): 551–559.
                 Society, vol.28(1): 159–167.                       http://dx.doi.org/10.1016/0010-4361(95)92620-R.
                 http://dx.doi.org/10.1016/j.jeurceramsoc.2007.04.013.   32.  Mrse A  M and  Piggott M  R,  1993, Compressive
              23.  Lu X S, Chen L F, Amini N, et al. 2012, Novel methods   properties of unidirectional carbon fibre laminates: The
                 to fabricate  macroporous 3D  carbon scaffolds  and   effects of unintentional and intentional fibre misali-
                 ordered surface mesopores on carbon filaments. Journal   gnments. Composites Science and Technology, vol.46(3):
                 of Porous Materials, vol.19(5): 529–536.           219–227.

                                        International Journal of Bioprinting (2015)–Volume 1, Issue 1      75
   74   75   76   77   78   79   80   81   82   83   84