Page 79 - IJB-1-1
P. 79
Mohammad Vaezi and Shoufeng Yang
13. Tan K H, Chua C K, Leong K F, et al. 2005, Fabrication http://dx.doi.org/10.1007/s10934-011-9501-x.
and characterization of three-dimensional 24. Yang H, Yang S, Chi X, et al. 2006, Fine ceramic
poly(ether-ether-ketone)/-hydroxyapatite biocomposite lattices prepared by extrusion freeforming. Journal of
scaffolds using laser sintering. Proceedings of the Biomedical Materials Research Part B: Applied
Institution of Mechanical Engineers, Part H: Journal of Biomaterials, vol.79B(1): 116–121.
Engineering in Medicine, vol.219(3): 183–194. http://dx.doi.org/10.1002/jbm.b.30520.
http://dx.doi.org/10.1243/095441105x9345. 25. Yang H Y, Thompson I, Yang S F, et al. 2008,
14. Schmidt M, Pohle D and Rechtenwald T, 2007, Dissolution characteristics of extrusion freeformed
Selective laser sintering of PEEK. CIRP Annals- hydroxyapatite–tricalcium phosphate scaffolds. Journal
Manufacturing Technology, vol.56(1): 205–208. of Materials Science: Materials in Medicine, vol.19(11):
http://dx.doi.org/10.1016/j.cirp.2007.05.097. 3345–3353.
15. Yang S, Yang H, Chi X, et al. 2008. Rapid prototyping http://dx.doi.org/10.1007/s10856-008-3473-7.
of ceramic lattices for hard tissue scaffolds. Materials & 26. Jaekel D J, Macdonald D W and Kurtz S M, 2011,
Design, vol.29(9): 1802–1809. Characterization of PEEK biomaterials using the small
http://dx.doi.org/10.1016/j.matdes.2008.03.024. punch test. Journal of the Mechanical Behavior of
16. Lu X S, Lee Y J, Yang S F, et al. 2009, Fabrication of Biomedical Materials, vol.4(7): 1275–1282.
millimeter-wave electromagnetic bandgap crystals using http://dx.doi.org/10.1016/j.jmbbm.2011.04.014.
microwave dielectric powders. Journal of the American 27. Nieminen T, Kallela I, Wuolijoki E, et al. 2008,
Ceramic Society, vol.92(2): 371–378. Amorphous and crystalline polyetheretherketone:
http://dx.doi.org/10.1111/j.1551-2916.2008.02907.x. mechanical properties and tissue reactions during a
17. Lu X S, Lee Y J, Yang S F, et al. 2010, Solvent-based 3-year follow-up. Journal of Biomedical Materials
paste extrusion solid freeforming. Journal of the Research Part A, vol.84A(2): 377–383.
European Ceramic Society, vol.30(1): 1–10.
http://dx.doi.org/10.1016/j.jeurceramsoc.2009.07.019. http://dx.doi.org/10.1002/jbm.a.31310.
18. Lu X S, Lee Y J, Yang S F, et al. 2009, Extrusion 28. Conrad T L, Jaekel D J, Kurtz S M, et al. 2013, Effects
freeforming of millimeter-wave electromagnetic band- of the mold temperature on the mechanical properties
gap (EBG) photonic crystals. Tsinghua Science and and crystallinity of hydroxyapatite whisker-reinforced
Technology, vol.14(S1): 168–174. polyetheretherketone scaffolds. Journal of Biomedical
http://dx.doi.org/10.1016/S1007-0214(09)70087-2. Materials Research Part B: Applied Biomaterials,
19. Lu X S, Lee Y J, Yang S F, et al. 2009, Fine lattice vol.101B(4): 576–583.
structures fabricated by extrusion freeforming: Process http://dx.doi.org/10.1002/jbm.b.32859.
variables. Journal of Materials Processing Technology, 29. Yang H Y, Chi X P, Yang S, et al. 2010, Mechanical
vol.209(10): 4654–4661. strength of extrusion freeformed calcium phosphate
http://dx.doi.org/10.1016/j.jmatprotec.2008.11.039. filaments. Journal of Materials Science: Materials in
20. Lu X S, Lee Y J, Yang S F, et al. 2009. Extrusion Medicine, vol.21(5): 1503–1510.
freeforming of millimeter wave electromagnetic band- http://dx.doi.org/10.1007/s10856-010-4009-5.
gap (EBG) structures. Rapid Prototyping Journal, vol. 30. Luo H L, Xiong G Y, Yang Z W, et al. 2014, Preparation
15(1): 42–51. of three-dimensional braided carbon fiber-reinforced
http://dx.doi.org/10.1108/13552540910925054. PEEK composites for potential load-bearing bone
21. Lu X S, Lee Y J, Yang S F, et al. 2008, Fabrication of fixations. Part I. Mechanical properties and cytocom-
electromagnetic crystals by extrusion freeforming. patibility. Journal of the Mechanical Behavior of
Metamaterials, vol.2(1): 36–44. Biomedical Materials, vol.29: 103–113.
http://dx.doi.org/10.1016/j.metmat.2007.12.001. http://dx.doi.org/10.1016/j.jmbbm.2013.09.003.
22. Yang H Y, Yang S F, Chi X P, et al. 2008, Sintering 31. Tai N H, Ma C C M and Wu S H, 1995, Fatigue
behaviour of calcium phosphate filaments for use as behaviour of carbon fibre/PEEK laminate composites.
hard tissue scaffolds. Journal of the European Ceramic Composites, vol.26(8): 551–559.
Society, vol.28(1): 159–167. http://dx.doi.org/10.1016/0010-4361(95)92620-R.
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.04.013. 32. Mrse A M and Piggott M R, 1993, Compressive
23. Lu X S, Chen L F, Amini N, et al. 2012, Novel methods properties of unidirectional carbon fibre laminates: The
to fabricate macroporous 3D carbon scaffolds and effects of unintentional and intentional fibre misali-
ordered surface mesopores on carbon filaments. Journal gnments. Composites Science and Technology, vol.46(3):
of Porous Materials, vol.19(5): 529–536. 219–227.
International Journal of Bioprinting (2015)–Volume 1, Issue 1 75

