Page 80 - IJB-1-1
P. 80
A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network
http://dx.doi.org/10.1016/0266-3538(93)90156-B. http://dx.doi.org/10.1134/S2075113313010048.
33. Vaezi M, Chianrabutra S, Mellor B, et al. 2013, Multiple 39. Alge D L and Chu T M G, 2010, Calcium phosphate
material additive manufacturing – Part 1: a review. cement reinforcement by polymer infiltration and in situ
Virtual and Physical Prototyping, vol.8(1): 19–50. curing: a method for 3D scaffold reinforcement. Journal
http://dx.doi.org/10.1080/17452759.2013.778175. of Biomedical Materials Research Part A, vol.94A(2):
34. Vaezi M, Seitz H and Yang S F, 2013, A review on 3D 547–555.
micro-additive manufacturing technologies. The http://dx.doi.org/10.1002/jbm.a.32742.
International Journal of Advanced Manufacturing 40. Bang L T, Kawachi G, Nakagawa M, et al. 2013, The
Technology, vol.67(5–8): 1721–1754. use of poly (ε-caprolactone) to enhance the mechanical
http://dx.doi.org/10.1007/s00170-012-4605-2. strength of porous Si-substituted carbonate apatite.
35. Martínez-Vázquez F J, Perera F H, Miranda P, et al. Journal of Applied Polymer Science, vol.130(1):
2010, Improving the compressive strength of bioceramic 426–433.
robocast scaffolds by polymer infiltration. Acta http://dx.doi.org/10.1002/app.39164.
Biomaterialia, vol.6(11): 4361–4368. 41. Ma R, Fang L, Luo Z K, et al. 2014, Mechanical
http://dx.doi.org/10.1016/j.actbio.2010.05.024. performance and in vivo bioactivity of functionally
36. Seol Y J, Park D Y, Park J Y, et al. 2013, A new method graded PEEK–HA biocomposite materials. Journal of
of fabricating robust freeform 3D ceramic scaffolds for Sol-Gel Science and Technology, vol.70(3): 339–345.
bone tissue regeneration. Biotechnology and Bioen- http://dx.doi.org/10.1007/s10971-014-3287-7.
gineering, vol.110(5): 1444–1455. 42. Duan B, Cheung W L and Wang M, 2011, Optimized
http://dx.doi.org/10.1002/bit.24794. fabrication of Ca-P/PHBV nanocomposite scaffolds via
37. Lee B T, Quang D V, Youn M H, et al. 2008, Fabrication of selective laser sintering for bone tissue engineering.
biphasic calcium phosphates/polycaprolactone compo- Biofabrication, vol.3(1): 015001.
sites by melt infiltration process. Journal of Materials http://dx.doi.org/10.1088/1758-5082/3/1/015001.
Science: Materials in Medicine, vol.19(5): 2223–2229. 43. Huang W, Feng P, Gao C D, et al. 2015, Microstructure,
http://dx.doi.org/10.1007/s10856-007-3279-z. mechanical, and biological properties of porous
38. Fedotov A Y, Bakunova N V, Komlev V S, et al. 2013, poly(vinylidene fluoride) scaffolds fabricated by
Increase in mechanical properties of porous materials by selective laser sintering. International Journal of
polymer impregnation. Inorganic Materials: Applied Polymer Science, vol.2015: 1–9.
Research, vol.4(1): 7–11. http://dx.doi.org/10.1155/2015/132965.
76 International Journal of Bioprinting (2015)–Volume 1, Issue 1

