Page 80 - IJB-1-1
P. 80

A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network

                 http://dx.doi.org/10.1016/0266-3538(93)90156-B.    http://dx.doi.org/10.1134/S2075113313010048.
              33.  Vaezi M, Chianrabutra S, Mellor B, et al. 2013, Multiple   39.  Alge D  L and  Chu T  M  G,  2010,  Calcium phosphate
                 material additive manufacturing  –  Part 1:  a  review.   cement reinforcement by polymer infiltration and in situ
                 Virtual and Physical Prototyping, vol.8(1): 19–50.     curing: a method for 3D scaffold reinforcement. Journal
                 http://dx.doi.org/10.1080/17452759.2013.778175.    of Biomedical Materials Research Part A,  vol.94A(2):
              34.  Vaezi M, Seitz H and Yang S F, 2013, A review on 3D   547–555.
                 micro-additive  manufacturing  technologies.   The   http://dx.doi.org/10.1002/jbm.a.32742.
                 International Journal  of Advanced Manufacturing   40.  Bang L  T, Kawachi  G, Nakagawa M, et al. 2013, The
                 Technology, vol.67(5–8): 1721–1754.                use of poly (ε-caprolactone) to enhance the mechanical
                 http://dx.doi.org/10.1007/s00170-012-4605-2.       strength  of  porous Si-substituted carbonate apatite.
              35.  Martínez-Vázquez F  J, Perera  F  H,  Miranda P,  et al.   Journal of Applied  Polymer  Science,  vol.130(1):
                 2010, Improving the compressive strength of bioceramic   426–433.
                 robocast scaffolds by polymer infiltration.  Acta   http://dx.doi.org/10.1002/app.39164.
                 Biomaterialia, vol.6(11): 4361–4368.           41.  Ma R, Fang L,  Luo Z  K,  et al.  2014,  Mechanical
                 http://dx.doi.org/10.1016/j.actbio.2010.05.024.    performance  and  in vivo  bioactivity  of  functionally
              36.  Seol Y J, Park D Y, Park J Y, et al. 2013, A new method   graded PEEK–HA  biocomposite materials.  Journal of
                 of fabricating robust freeform 3D ceramic scaffolds for   Sol-Gel Science and Technology, vol.70(3): 339–345.
                 bone tissue  regeneration.  Biotechnology and  Bioen-  http://dx.doi.org/10.1007/s10971-014-3287-7.
                 gineering, vol.110(5): 1444–1455.              42.  Duan B, Cheung W  L and Wang M,  2011, Optimized
                 http://dx.doi.org/10.1002/bit.24794.               fabrication of Ca-P/PHBV nanocomposite scaffolds via
              37.  Lee B T, Quang D V, Youn M H, et al. 2008, Fabrication of   selective laser sintering for bone tissue engineering.
                 biphasic calcium phosphates/polycaprolactone compo-  Biofabrication, vol.3(1): 015001.
                 sites by  melt infiltration process.  Journal of  Materials   http://dx.doi.org/10.1088/1758-5082/3/1/015001.
                 Science: Materials in Medicine, vol.19(5): 2223–2229.     43.  Huang W, Feng P, Gao C D, et al. 2015, Microstructure,
                 http://dx.doi.org/10.1007/s10856-007-3279-z.       mechanical, and  biological  properties of  porous
              38.  Fedotov A Y, Bakunova N V, Komlev V S, et al. 2013,   poly(vinylidene fluoride)  scaffolds fabricated by
                 Increase in mechanical properties of porous materials by   selective laser sintering.  International Journal of
                 polymer impregnation.  Inorganic Materials: Applied   Polymer Science, vol.2015: 1–9.
                 Research, vol.4(1): 7–11.                          http://dx.doi.org/10.1155/2015/132965.




































            76                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   75   76   77   78   79   80   81   82   83   84   85