Page 453 - IJB-10-1
P. 453

International Journal of Bioprinting                                Bioactive scaffold for necrosis bone repair




            14.  Mock DM. Biotin: From nutrition to therapeutics.       doi: 10.1088/1758-5090/aa7078
               J Nutr. 2017;147(8):1487–1492.                  24.  Gao X, Wang H, Luan S, Zhou G. Low-temperature
               doi: 10.3945/jn.116.238956
                                                                  printed hierarchically porous induced-biomineralization
            15.  Dai Z, Koh WP. B-vitamins and bone health--a review of the   polyaryletherketone  scaffold  for  bone  tissue  engineering.
               current evidence. Nutrients. 2015;7(5):3322–3346.  Adv Healthc Mater. 2022;11(18): e2200977.
               doi: 10.3390/nu7053322                             doi: 10.1002/adhm.202200977
            16.  Cao J, Yang B, Yarmolenka MA, et al. Osteogenic potential   25.  Lian M, Sun B, Han Y, et al. A low-temperature-printed
               evaluation of biotin combined with magnesium-doped   hierarchical porous sponge-like scaffold that promotes
               hydroxyapatite sustained-release film.  Mater Sci Eng C   cell-material  interaction  and  modulates  paracrine  activity
               Mater Biol Appl. 2022;135(2022):112679.            of MSCs for vascularized bone regeneration. Biomaterials.
               doi: 10.1016/j.msec.2022.112679                    2021;274 (2021):120841.
                                                                  doi: 10.1016/j.biomaterials.2021.120841
            17.  Cheng T, Cao J, Wu T, et al. Study on osteoinductive activity
               of biotin film by low-energy electron beam deposition.   26.  Liu Z, Feng X, Wang H, et al. Carbon nanotubes as VEGF
               Biomater Adv. 2022;135(2022):212730.               carriers to improve the early vascularization of porcine
               doi: 10.1016/j.bioadv.2022.212730                  small intestinal submucosa in abdominal wall defect repair.
                                                                  Int J Nanomedicine. 2014;9(2014):1275–1286.
            18.  Nobles KP, Janorkar AV, Williamson RS. Surface
               modifications to enhance osseointegration-Resulting      doi: 10.2147/IJN.S58626
               material  properties  and  biological  responses.  J Biomed   27.  Ma J, Sun Y, Zhou H, et al. Animal models of femur head
               Mater Res B Appl Biomater. 2021;109(11):1909–1923.  necrosis for tissue engineering and biomaterials research.
               doi: 10.1002/jbm.b.34835                           Tissue Eng Part C Methods. 2022;28(5):214–227.
                                                                  doi: 10.1089/ten.TEC.2022.0043
            19.  Liu W, Wang D, Huang J, et al. Low-temperature deposition
               manufacturing: A novel and promising rapid prototyping   28.  Wang H, Zhang Y, Ren C, et al. Biomechanical properties
               technology for the fabrication of tissue-engineered scaffold.   and  clinical  significance  of  cancellous  bone  in  proximal
               Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 2):976–982.  femur: A review. Injury. 2023;54(6):1432–1438.
               doi: 10.1016/j.msec.2016.04.014                    doi: 10.1016/j.injury.2023.03.010
            20.  Su X, Wang T, Guo S. Applications of 3D printed bone   29.  Kang D, Lee YB, Yang GH, et al. FeS(2)-incorporated
               tissue engineering scaffolds in the stem cell field. Regen Ther.   3D PCL scaffold improves new bone formation and
               2021;16(2021):63–72.                               neovascularization  in  a rat  calvarial  defect  model.
               doi: 10.1016/j.reth.2021.01.007                    Int J Bioprint. 2023;9(1): 636.
                                                                  doi: 10.18063/ijb.v9i1.636
            21.  Parulski C, Jennotte O, Lechanteur A, Evrard B. Challenges
               of fused deposition modeling 3D printing in pharmaceutical   30.  Guo  L,  Liang  Z,  Yang  L,  et  al.  The  role  of  natural
               applications:  Where are we now.  Adv Drug Deliv Rev.   polymers in  bone  tissue engineering.  J Control Release.
               2021;175(2021):113810.                             2021;338(2021):571–582.
               doi: 10.1016/j.addr.2021.05.020                    doi: 10.1016/j.jconrel.2021.08.055
            22.  Xu M, Li Y, Suo H, et al. Fabricating a pearl/PLGA composite   31.  Yoon BH, Mont MA, Koo KH, et al. The 2019 Revised
               scaffold by the low-temperature deposition manufacturing   Version of Association Research Circulation Osseous
               technique for bone tissue engineering.  Biofabrication.   Staging System of Osteonecrosis of the Femoral Head.  J
               2010;2(2):025002.                                  Arthroplasty. 2020;35(4):933–940.
               doi: 10.1088/1758-5082/2/2/025002                  doi: 10.1016/j.arth.2019.11.029
            23.  Zhang T, Zhang H, Zhang L, et al. Biomimetic design and   32.  Liu LH, Zhang QY, Sun W, Li ZR, Gao FQ. Corticosteroid-
               fabrication of multilayered osteochondral scaffolds by   induced  osteonecrosis  of the  femoral  head: Detection,
               low-temperature deposition manufacturing and thermal-  diagnosis, and treatment in earlier stages. Chin Med J (Engl).
               induced phase-separation techniques.  Biofabrication.   2017;130(21):2601–2607.
               2017;9(2):025021.                                  doi: 10.4103/0366-6999.217094















            Volume 10 Issue 1 (2024)                       445                          https://doi.org/10.36922/ijb.1152
   448   449   450   451   452   453   454   455   456   457   458