Page 37 - IJB-2-2
P. 37
Jia Min Lee, Swee Leong Sing, Edgar Yong Sheng Tan, et al.
thy. Journal of Cardiovascular Magnetic Resonance, prototyping in tissue engineering: challenges and poten-
vol.16(87). tial. Trends in Biotechnology, vol.22(12): 643–652.
http://dx.doi.org/10.1186/s12968-014-0087-8 http://dx.doi.org/10.1016/j.tibtech.2004.10.004
7. Tillman B, Hardin-Young J, Shannon W, et al., 2013, 17. Tillman B, Hardin-Young J, Shannon W, et al., 2013,
Meeting the need for regenerative therapies: transla- Meeting the need for regenerative therapies: transla-
tion-focused analysis of U.S. regenerative medicine op- tion-focused analysis of U.S. regenerative medicine op-
portunities in cardiovascular and peripheral vascular portunities in cardiovascular and peripheral vascular
medicine using detailed incidence data. Tissue Engi- medicine using detailed incidence data. Tissue Engi-
neering Part B: Reviews, vol.19(2): 99–115. neering Part B: Reviews, vol.19(2): 99–115.
http://dx.doi.org/10.1089/ten.teb.2011.0678 http://dx.doi.org/10.1089/ten.teb.2011.0678
8. Makkar R R, Smith R R, Cheng K, et al., 2012, Intra- 18. Sing S L, An J, Yeong W Y, et al., 2016, Laser and elec-
coronary cardiosphere-derived cells for heart regenera- tron-beam powder-bed additive manufacturing of metal-
tion after myocardial infarction (CADUCEUS): A pros- lic implants: a review on processes, materials and de-
pective, randomised phase 1 trial. The Lancet, signs. Journal of Orthopaedic Research, vol.34(3):
vol.379(9819): 895–904. 369–385.
http://dx.doi.org/10.1016/S0140-6736(12)60195-0 http://dx.doi.org/10.1002/jor.23075
9. Bolli R, Chugh A R, D'Amario D, et al., 2011, Cardiac 19. Sing S L, Yeong W Y, Wiria F E, et al., 2016, Characte-
stem cells in patients with ischaemic cardiomyopathy rization of titanium lattice structures fabricated by selec-
(SCIPIO): initial results of a randomised phase 1 trial. tive laser melting using an adapted compressive test
Lancet, vol.378(9806): 1847–1857. method. Experimental Mechanics, vol.56(5): 735–748.
http://dx.doi.org/10.1016/S0140-6736(11)61590-0 http://dx.doi.org/10.1007/s11340-015-0117-y
10. Lin Y D, Yeh M L, Yang Y J, et al., 2010, Intramyocar- 20. Yeong W Y, Sudarmadji N, Yu H Y, et al., 2010, Porous
dial peptide nanofiber injection improves postinfarction polycaprolactone scaffold for cardia tissue engineering
ventricular remodeling and efficacy of bone marrow cell fabricated by selective laser sintering. Acta Biomateria-
therapy in pigs. Circulation, vol.122: S132–S141. lia, vol.6(6): 2028–2034.
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.939 http://dx.doi.org/10.1016/j.actbio.2009.12.033
512 21. Jawad H, Ali N N, Lyon A R, et al., 2007, Myocardial
11. Malliaras K, Makkar R R, Smith R R, et al., 2014, tissue engineering: a review. Journal of Tissue Engi-
Intracoronary cardiosphere-derived cells after myocar- neering and Regenerative Medicine, vol.1(5): 327–342.
dial infarction: evidence of therapeutic regeneration in http://dx.doi.org/10.1002/term.46
the final 1-year results of the CADUCEUS trial (CAr- 22. Iyer R K, Chiu L L, Reis L A, et al., 2011, Engineered
diosphere-Derived aUtologous stem CElls to reverse cardiac tissues. Current Opinion in Biotechnology,
ventricUlar dySfunction). Journal of the American Col- vol.22(5): 706–714.
lege of Cardiology, vol.63(2): 110–122. http://dx.doi.org/10.1016/j.copbio.2011.04.004
http://dx.doi.org/10.1016/j.jacc.2013.08.724 23. Kohl P, Camelliti P, Burton F L, et al., 2005, Electrical
12. Bolli R, Chugh A R, D'Amario D, et al., 2011, Cardiac coupling of fibroblasts and myocytes: relevance for car-
stem cells in patients with ischaemic cardiomyopathy diac propagation. Journal of Electrocardiology, vol.38(4):
(SCIPIO): initial results of a randomised phase 1 trial. 45–50.
The Lancet, vol.378(9806): 1847–1857. http://dx.doi.org/10.1016/j.jelectrocard.2005.06.096
http://dx.doi.org/10.1016/S0140-6736(11)61590-0 24. Camelliti P, Green C R, LeGrice I, et al., 2004, Fibrob-
13. Cheng K, Blusztajn A, Shen D, et al., 2012, Functional last network in rabbit sinoatrial node: structural and
performance of human cardiosphere-derived cells deli- functional identification of homogeneous and heteroge-
vered in an in situ polymerizable hyaluronan-gelatin neous cell coupling. Circulation Research, vol.94:
hydrogel. Biomaterials, vol.33(21): 5317–5324. 828–835.
http://dx.doi.org/10.1016/j.biomaterials.2012.04.006 http://dx.doi.org/10.1161/01.RES.0000122382.19400.14
14. Wiria F E, Leong K F, Chua C K, et al., 2007, Poly- 25. Hirsch E, Nagai R and Thum T, 2014, Heterocellular
ε-caprolactone/hydroxyapatite for tissue engineering signalling and crosstalk in the heart in ischaemia and
scaffold fabrication via selective laser sintering. Acta heart failure. Cardiovascular Research, vol.102(2):
Biomaterialia, vol.3(1): 1–12. 191–193.
http://dx.doi.org/10.1016/j.actbio.2006.07.008 http://dx.doi.org/10.1093/cvr/cvu073
15. Langer R and Vacanti J P, 1993, Tissue engineering. 26. Nakatani S, 2011, Left ventricular rotation and twist:
Science, vol.260(5510): 920–926. why should we learn? Journal of Cardiovascular Ul-
http://dx.doi.org/10.1126/science.8493529 trasound, vol.19(1): 1–6.
16. Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid http://dx.doi.org/10.4250/jcu.2011.19.1.1
International Journal of Bioprinting (2016)–Volume 2, Issue 2 33

