Page 39 - IJB-2-2
P. 39

Jia Min Lee, Swee Leong Sing, Edgar Yong  Sheng Tan,  et al.

                 gineering. Polymers, vol.3(2): 740–761.            Conference  on Bioprinting and  Biofabrication in  Bor-
                 http://dx.doi.org/10.3390/polym3020740             deaux (3B'09). Biofabrication, vol.2(1): 010201.
              49.  Chua C K, Yeong W Y and Leong K F, 2005, Rapid   http://dx.doi.org/10.1088/1758-5082/2/1/010201
                 prototyping  in tissue engineering: a state-of-the-art re-  59.  Ozbolat I T and Hospodiuk M, 2016, Current advances
                 port, in  Virtual Modelling and Rapid Manufacturing:   and future perspectives in extrusion-based bioprinting.
                 Advanced Research in Virtual and Rapid  Prototyping.   Biomaterials, vol.76: 321–343.
                                 nd
                 Proceedings of the 2  International Conference on Ad-  http://dx.doi.org/10.1016/j.biomaterials.2015.10.076
                  vanced Research in Virtual and Rapid Prototyping, Lei-  60.  Xu T, Zhao W, Zhu J M, et al., 2013, Complex hetero-
                  ria, Portugal, 28 September–1 October, 2005, 19–27.   geneous tissue constructs containing multiple cell types
              50.  Yeong W Y, Chua C K and Leong K F, et al., 2005, De-  prepared by  inkjet printing technology.  Biomaterials,
                 velopment of scaffolds for tissue engineering using a 3D   vol.34(1): 130–139.
                 inkjet model maker, in  Virtual Modelling and Rapid   http://dx.doi.org/10.1016/j.biomaterials.2012.09.035
                 Manufacturing: Advanced Research in Virtual and Rap-  61.  Guillemot F, Guillotin B, Fontaine A, et al., 2011, La-
                                               nd
                 id Prototyping. Proceedings of  the 2   International   ser-assisted bioprinting to deal with tissue complexity in
                  Conference on Advanced Research in Virtual and Rapid   regenerative medicine. MRS Bulletin, vol.36(12): 1015–
                  Prototyping, Leiria, Portugal, 28 September–1 October,   1019.
                  2005, 115–118.                                    http://dx.doi.org/10.1557/mrs.2011.272
              51.  Shimizu T, 2014, Cell sheet-based tissue engineering for   62.  Lee H, Ahn S,  Bonassar L J,  et al., 2013, Cell-laden
                  fabricating 3-dimensional heart tissues.  Circulation   poly(varepsilon-caprolactone)/alginate hybrid scaffolds
                  Journal, vol.78(11): 2594–2603.                   fabricated by  an aerosol cross-linking process  for ob-
                 http://doi.org/10.1253/circj.CJ-14-0973            taining homogeneous cell distribution: fabrication, seed-
              52.  Yasui H,  Lee J  K, Yoshida A, et  al.,  2014, Excitation   ing efficiency,  and cell proliferation and distribution.
                 propagation in three-dimensional engineered hearts us-  Tissue Engineering Part C: Methods, vol.19(10): 784–
                 ing  decellularized extracellular matrix.  Biomaterials,   793.
                 vol.35(27): 7839–7850.                             http://dx.doi.org/10.1089/ten.tec.2012.0651
                 http://dx.doi.org/10.1016/j.biomaterials.2014.05.080   63.  Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D
              53.  Shimizu T, Yamato M, Kikuchi A,  et al., 2003, Cell   printing of gelatin methacrylamide cell-laden tissue-eng-
                 sheet engineering for myocardial tissue reconstruction.   ineered constructs with high cell viability. Biomaterials,
                 Biomaterials, vol.24(13): 2309–2316.               vol.35(1): 49–62.
                 http://dx.doi.org/10.1016/S0142-9612(03)00110-8    http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
              54.  Hata H, Bar A, Dorfman S, et al., 2010, Engineering a   64.  Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bi-
                 novel three-dimensional contractile myocardial patch   oprinting of heterogeneous aortic valve conduits with
                 with  cell sheets and  decellularised  matrix.  European   alginate/gelatin hydrogels. Journal of Biomedical Mate-
                 Journal of Cardio-Thoracic Surgery, vol.38(4): 450–455.   rials Research: Part A, vol.101(5): 1255–1264.
                 http://dx.doi.org/10.1016/j.ejcts.2010.02.009      http://dx.doi.org/10.1002/jbm.a.34420
              55.  Miki K, Uenaka H, Saito A, et al., 2012, Bioengineered   65.  Fedorovich N E, Wijnberg H M, Dhert W J et al., 2011,
                 myocardium derived from induced pluripotent stem   Distinct tissue formation by  heterogeneous printing of
                 cells  improves cardiac  function  and  attenuates cardiac   osteo-  and endothelial progenitor cells.  Tissue Engi-
                 remodeling following chronic  myocardial infarction  in   neering Part A, vol.17(15–16): 2113–2121.
                 rats. Stem Cells Translational Medicine, vol.1(5): 430–   http://dx.doi.org/10.1089/ten.TEA.2011.0019
                 437.                                           66.  Huang Y, He K and Wang X, 2013, Rapid prototyping of
                 http://dx.doi.org/10.5966/sctm.2011-0038           a hybrid hierarchical polyurethane-cell/hydrogel con-
              56.  Hasegawa A,  Haraguchi Y, Shimizu  T,  et al., 2015,   struct for regenerative medicine. Materials Science and
                 Rapid fabrication system for  three-dimensional tissues   Engineering: C. Materials for Biological Applications,
                 using cell sheet engineering and centrifugation. Journal   vol.33(6): 3220–3229.
                 of Biomedical Materials Research Part A, vol.103(12):   http://dx.doi.org/10.1016/j.msec.2013.03.048
                 3825–3833.                                     67.  Ozbolat I T, Chen H and Yu Y, 2014, Development of
                 http://dx.doi.org/10.1002/jbm.a.35526              ‘Multi-arm Bioprinter’ for hybrid biofabrication of tis-
              57.  Sakaguchi K, Shimizu T, Horaguchi S, et al., 2013, In   sue engineering constructs. Robotics and Computer-Int-
                 Vitro engineering of vascularized tissue surrogates. Sci-  egrated Manufacturing, vol.30(3): 295–304.
                 entific Reports, vol.3: 1316.                      http://dx.doi.org/10.1016/j.rcim.2013.10.005
                 http://dx.doi.org/10.1038/srep01316            68.  Shim J M, Lee J S, Kim J Y, et al., 2012, Bioprinting of
              58.  Guillemot F, Mironov V and Nakamura M, 2010, Bio-  a mechanically  enhanced  three-dimensional dual cell-
                 printing is coming of age: report from the International   laden construct for osteochondral tissue engineering us-

                                        International Journal of Bioprinting (2016)–Volume 2, Issue 2      35
   34   35   36   37   38   39   40   41   42   43   44