Page 39 - IJB-2-2
P. 39
Jia Min Lee, Swee Leong Sing, Edgar Yong Sheng Tan, et al.
gineering. Polymers, vol.3(2): 740–761. Conference on Bioprinting and Biofabrication in Bor-
http://dx.doi.org/10.3390/polym3020740 deaux (3B'09). Biofabrication, vol.2(1): 010201.
49. Chua C K, Yeong W Y and Leong K F, 2005, Rapid http://dx.doi.org/10.1088/1758-5082/2/1/010201
prototyping in tissue engineering: a state-of-the-art re- 59. Ozbolat I T and Hospodiuk M, 2016, Current advances
port, in Virtual Modelling and Rapid Manufacturing: and future perspectives in extrusion-based bioprinting.
Advanced Research in Virtual and Rapid Prototyping. Biomaterials, vol.76: 321–343.
nd
Proceedings of the 2 International Conference on Ad- http://dx.doi.org/10.1016/j.biomaterials.2015.10.076
vanced Research in Virtual and Rapid Prototyping, Lei- 60. Xu T, Zhao W, Zhu J M, et al., 2013, Complex hetero-
ria, Portugal, 28 September–1 October, 2005, 19–27. geneous tissue constructs containing multiple cell types
50. Yeong W Y, Chua C K and Leong K F, et al., 2005, De- prepared by inkjet printing technology. Biomaterials,
velopment of scaffolds for tissue engineering using a 3D vol.34(1): 130–139.
inkjet model maker, in Virtual Modelling and Rapid http://dx.doi.org/10.1016/j.biomaterials.2012.09.035
Manufacturing: Advanced Research in Virtual and Rap- 61. Guillemot F, Guillotin B, Fontaine A, et al., 2011, La-
nd
id Prototyping. Proceedings of the 2 International ser-assisted bioprinting to deal with tissue complexity in
Conference on Advanced Research in Virtual and Rapid regenerative medicine. MRS Bulletin, vol.36(12): 1015–
Prototyping, Leiria, Portugal, 28 September–1 October, 1019.
2005, 115–118. http://dx.doi.org/10.1557/mrs.2011.272
51. Shimizu T, 2014, Cell sheet-based tissue engineering for 62. Lee H, Ahn S, Bonassar L J, et al., 2013, Cell-laden
fabricating 3-dimensional heart tissues. Circulation poly(varepsilon-caprolactone)/alginate hybrid scaffolds
Journal, vol.78(11): 2594–2603. fabricated by an aerosol cross-linking process for ob-
http://doi.org/10.1253/circj.CJ-14-0973 taining homogeneous cell distribution: fabrication, seed-
52. Yasui H, Lee J K, Yoshida A, et al., 2014, Excitation ing efficiency, and cell proliferation and distribution.
propagation in three-dimensional engineered hearts us- Tissue Engineering Part C: Methods, vol.19(10): 784–
ing decellularized extracellular matrix. Biomaterials, 793.
vol.35(27): 7839–7850. http://dx.doi.org/10.1089/ten.tec.2012.0651
http://dx.doi.org/10.1016/j.biomaterials.2014.05.080 63. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D
53. Shimizu T, Yamato M, Kikuchi A, et al., 2003, Cell printing of gelatin methacrylamide cell-laden tissue-eng-
sheet engineering for myocardial tissue reconstruction. ineered constructs with high cell viability. Biomaterials,
Biomaterials, vol.24(13): 2309–2316. vol.35(1): 49–62.
http://dx.doi.org/10.1016/S0142-9612(03)00110-8 http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
54. Hata H, Bar A, Dorfman S, et al., 2010, Engineering a 64. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bi-
novel three-dimensional contractile myocardial patch oprinting of heterogeneous aortic valve conduits with
with cell sheets and decellularised matrix. European alginate/gelatin hydrogels. Journal of Biomedical Mate-
Journal of Cardio-Thoracic Surgery, vol.38(4): 450–455. rials Research: Part A, vol.101(5): 1255–1264.
http://dx.doi.org/10.1016/j.ejcts.2010.02.009 http://dx.doi.org/10.1002/jbm.a.34420
55. Miki K, Uenaka H, Saito A, et al., 2012, Bioengineered 65. Fedorovich N E, Wijnberg H M, Dhert W J et al., 2011,
myocardium derived from induced pluripotent stem Distinct tissue formation by heterogeneous printing of
cells improves cardiac function and attenuates cardiac osteo- and endothelial progenitor cells. Tissue Engi-
remodeling following chronic myocardial infarction in neering Part A, vol.17(15–16): 2113–2121.
rats. Stem Cells Translational Medicine, vol.1(5): 430– http://dx.doi.org/10.1089/ten.TEA.2011.0019
437. 66. Huang Y, He K and Wang X, 2013, Rapid prototyping of
http://dx.doi.org/10.5966/sctm.2011-0038 a hybrid hierarchical polyurethane-cell/hydrogel con-
56. Hasegawa A, Haraguchi Y, Shimizu T, et al., 2015, struct for regenerative medicine. Materials Science and
Rapid fabrication system for three-dimensional tissues Engineering: C. Materials for Biological Applications,
using cell sheet engineering and centrifugation. Journal vol.33(6): 3220–3229.
of Biomedical Materials Research Part A, vol.103(12): http://dx.doi.org/10.1016/j.msec.2013.03.048
3825–3833. 67. Ozbolat I T, Chen H and Yu Y, 2014, Development of
http://dx.doi.org/10.1002/jbm.a.35526 ‘Multi-arm Bioprinter’ for hybrid biofabrication of tis-
57. Sakaguchi K, Shimizu T, Horaguchi S, et al., 2013, In sue engineering constructs. Robotics and Computer-Int-
Vitro engineering of vascularized tissue surrogates. Sci- egrated Manufacturing, vol.30(3): 295–304.
entific Reports, vol.3: 1316. http://dx.doi.org/10.1016/j.rcim.2013.10.005
http://dx.doi.org/10.1038/srep01316 68. Shim J M, Lee J S, Kim J Y, et al., 2012, Bioprinting of
58. Guillemot F, Mironov V and Nakamura M, 2010, Bio- a mechanically enhanced three-dimensional dual cell-
printing is coming of age: report from the International laden construct for osteochondral tissue engineering us-
International Journal of Bioprinting (2016)–Volume 2, Issue 2 35

