Page 40 - IJB-2-2
P. 40

Bioprinting in cardiovascular tissue engineering: a review

                 ing a multi-head tissue/organ building system. Journal   http://dx.doi.org/10.1016/j.biomaterials.2011.08.071
                 of Micromechanics and Microengineering,  vol.22(8):   79.  Xu T, Baicu C, Aho M,  et al., 2009, Fabrication and
                 085014.                                            characterization of bio-engineered cardiac pseudo tis-
                 http://dx.doi.org/10.1088/0960-1317/22/8/085014    sues. Biofabrication, vol.1(3): 035001.
              69.  Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting   http://dx.doi.org/10.1088/1758-5082/1/3/035001
                 cell-laden matrigel for radioprotection study of liver by   80.  Vunjak-Novakovic G, Eschenhagen T and Mummery C,
                 pro-drug conversion in a dual-tissue microfluidic chip.   2014, Myocardial tissue engineering:  in  vitro  models.
                 Biofabrication, vol.3(3): 034112.                  Cold Spring Harbor Perspectives in Medicine, vol.4.(3):
                 http://dx.doi.org/10.1088/1758-5082/3/3/034112     a014076.
              70.  Wang X H, Yan Y N, Pan Y Q, et al., 2006, Generation   http://dx.doi.org/10.1101/cshperspect.a014076
                 of three-dimensional hepatocyte/gelatin structures with   81.  Chanthakulchan A, Koomsap P, Parkhi A A, et al., 2015,
                 rapid prototyping system. Tissue Engineering, vol.12(1):   Environmental  effects  in fibre fabrication using elec-
                 83–90.                                             trospinning-based rapid prototyping. Virtual and Physi-
              71.  Skardal A, Zhang J and Prestwich G D, 2010, Bioprint-  cal Prototyping, vol.10(4): 227–237.
                 ing vessel-like  constructs using hyaluronan hydrogels   http://dx.doi.org/10.1080/17452759.2015.1112411
                 crosslinked with tetrahedral polyethylene glycol tetra-  82.  Sooppan R, Paulsen S J, Han J,  et al., 2016,  In  vivo
                 crylates. Biomaterials, vol.31(24): 6173–6181.     anastomosis and perfusion of a three-dimensionally-
                 http://dx.doi.org/10.1016/j.biomaterials.2010.04.045   printed  construct containing microchannel  networks.
              72.  Visser J, Peters B, Burger T J, et al., 2013, Biofabrica-  Tissue Engineering Part C: Methods, vol.22(1): 1–7.
                 tion of multi-material anatomically shaped  tissue con-  http://dx.doi.org/10.1089/ten.TEC.2015.0239
                 structs. Biofabrication, vol.5(3): 035007.     83.  Liu L B and Wang X H, 2015, Creation of a vascular
                 http://dx.doi.org/10.1088/1758-5082/5/3/035007     system for organ manufacturing.  International Journal
              73.  Lee W, Lee V, Polio S, et al., 2009, Three-dimensional   of Bioprinting, vol.1(1): 77–86.
                  cell-hydrogel  printer  using electromechanical micro-  http://dx.doi.org/10.18063/IJB.2015.01.009
                  valve for tissue engineering. in  TRANSDUCERS 2009   84.  Dvir T, Timko B P, Brigham M D, et al., 2011, Nano-
                  —  2009 International Solid-State  Sensors, Actuators   wired three-dimensional cardiac patches. Nature Nano-
                  and Microsystems Conference, 2230–2233.           technology, vol.6(11): 720–725.
                 http://dx.doi.org/10.1109/SENSOR.2009.5285591      http://dx.doi.org/10.1038/nnano.2011.160
              74.  Gaetani R, Doevendans P A, Metz C H, J. et al., 2012,   85.  Xu L, Gutbrod S R, Bonifas A P, et al., 2014, 3D multi-
                  Cardiac  tissue  engineering using tissue printing tech-  functional integumentary membranes for spatiotemporal
                  nology and human cardiac progenitor cells.  Biomate-  cardiac measurements and stimulation across the entire
                 rials, vol.33(6): 1782–1790.                       epicardium. Nature Communications, vol.5: 3329.
                 http://dx.doi.org/10.1016/j.biomaterials.2011.11.003   http://dx.doi.org/10.1038/ncomms4329
              75.  Kolesky D B, Truby R L, Gladman A S, et al., 2014, 3D   86.  Wang S, Lee J M and Yeong W Y, 2015, Smart hydro-
                 bioprinting of  vascularized,  heterogeneous  cell-laden   gels for 3D bioprinting.  International Journal  of Bio-
                 tissue  constructs.  Advanced  Materials,  vol.26(19):   printing, vol.1(1): 3–14.
                 3124–3130.                                         http://dx.doi.org/10.18063/IJB.2015.01.005
                 http://dx.doi.org/10.1002/adma.201305506       87.  Dixon J E, Shah D A, Rogers C, et al., 2014, Combined
              76.  Norotte C, Marga F S, Niklason L E, et al., 2009, Scaf-  hydrogels that switch human pluripotent stem cells from
                 fold-free vascular  tissue  engineering using bioprinting.   self-renewal  to differentiation.  Proceedings of  the Na-
                 Biomaterials, vol.30(30): 5910–5917.               tional Academy of Sciences, vol.111(15): 5580–5585.
                 http://dx.doi.org/10.1016/j.biomaterials.2009.06.034   http://dx.doi.org/10.1073/pnas.1319685111
              77.  Hinton T J, Jallerat Q, Palchesko R N, et al., 2015, Three-   88.  Lee H Y, Kim H W, Lee J H, et al., 2015, Controlling
                 dimensional printing of complex biological structures by   oxygen release from hollow  microparticles for pro-
                 freeform reversible embedding of suspended hydrogels.   longed  cell survival under hypoxic  environment.  Bio-
                 Science Advances, vol.1: e1500758.                 materials, vol.53: 583–591.
                 http://dx.doi.org/10.1126/sciadv.1500758           http://dx.doi.org/10.1016/j.biomaterials.2015.02.117
              78.  Gaebel R, Ma N, Liu J, et al., 2011, Patterning human   89.  Farris A L, Rindone A N, Grayson W L, 2016, Oxygen
                 stem cells and  endothelial cells with laser printing for   delivering biomaterials for tissue  engineering.  Journal
                 cardiac regeneration.  Biomaterials,  vol.32(35): 9218–   of Materials Chemistry B, vol.4(20): 3422–3432.
                 9230.                                              http://dx.doi.org/10.1039/C5TB02635K





            36                          International Journal of Bioprinting (2016)–Volume 2, Issue 2
   35   36   37   38   39   40   41   42   43   44   45