Page 40 - IJB-2-2
P. 40
Bioprinting in cardiovascular tissue engineering: a review
ing a multi-head tissue/organ building system. Journal http://dx.doi.org/10.1016/j.biomaterials.2011.08.071
of Micromechanics and Microengineering, vol.22(8): 79. Xu T, Baicu C, Aho M, et al., 2009, Fabrication and
085014. characterization of bio-engineered cardiac pseudo tis-
http://dx.doi.org/10.1088/0960-1317/22/8/085014 sues. Biofabrication, vol.1(3): 035001.
69. Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting http://dx.doi.org/10.1088/1758-5082/1/3/035001
cell-laden matrigel for radioprotection study of liver by 80. Vunjak-Novakovic G, Eschenhagen T and Mummery C,
pro-drug conversion in a dual-tissue microfluidic chip. 2014, Myocardial tissue engineering: in vitro models.
Biofabrication, vol.3(3): 034112. Cold Spring Harbor Perspectives in Medicine, vol.4.(3):
http://dx.doi.org/10.1088/1758-5082/3/3/034112 a014076.
70. Wang X H, Yan Y N, Pan Y Q, et al., 2006, Generation http://dx.doi.org/10.1101/cshperspect.a014076
of three-dimensional hepatocyte/gelatin structures with 81. Chanthakulchan A, Koomsap P, Parkhi A A, et al., 2015,
rapid prototyping system. Tissue Engineering, vol.12(1): Environmental effects in fibre fabrication using elec-
83–90. trospinning-based rapid prototyping. Virtual and Physi-
71. Skardal A, Zhang J and Prestwich G D, 2010, Bioprint- cal Prototyping, vol.10(4): 227–237.
ing vessel-like constructs using hyaluronan hydrogels http://dx.doi.org/10.1080/17452759.2015.1112411
crosslinked with tetrahedral polyethylene glycol tetra- 82. Sooppan R, Paulsen S J, Han J, et al., 2016, In vivo
crylates. Biomaterials, vol.31(24): 6173–6181. anastomosis and perfusion of a three-dimensionally-
http://dx.doi.org/10.1016/j.biomaterials.2010.04.045 printed construct containing microchannel networks.
72. Visser J, Peters B, Burger T J, et al., 2013, Biofabrica- Tissue Engineering Part C: Methods, vol.22(1): 1–7.
tion of multi-material anatomically shaped tissue con- http://dx.doi.org/10.1089/ten.TEC.2015.0239
structs. Biofabrication, vol.5(3): 035007. 83. Liu L B and Wang X H, 2015, Creation of a vascular
http://dx.doi.org/10.1088/1758-5082/5/3/035007 system for organ manufacturing. International Journal
73. Lee W, Lee V, Polio S, et al., 2009, Three-dimensional of Bioprinting, vol.1(1): 77–86.
cell-hydrogel printer using electromechanical micro- http://dx.doi.org/10.18063/IJB.2015.01.009
valve for tissue engineering. in TRANSDUCERS 2009 84. Dvir T, Timko B P, Brigham M D, et al., 2011, Nano-
— 2009 International Solid-State Sensors, Actuators wired three-dimensional cardiac patches. Nature Nano-
and Microsystems Conference, 2230–2233. technology, vol.6(11): 720–725.
http://dx.doi.org/10.1109/SENSOR.2009.5285591 http://dx.doi.org/10.1038/nnano.2011.160
74. Gaetani R, Doevendans P A, Metz C H, J. et al., 2012, 85. Xu L, Gutbrod S R, Bonifas A P, et al., 2014, 3D multi-
Cardiac tissue engineering using tissue printing tech- functional integumentary membranes for spatiotemporal
nology and human cardiac progenitor cells. Biomate- cardiac measurements and stimulation across the entire
rials, vol.33(6): 1782–1790. epicardium. Nature Communications, vol.5: 3329.
http://dx.doi.org/10.1016/j.biomaterials.2011.11.003 http://dx.doi.org/10.1038/ncomms4329
75. Kolesky D B, Truby R L, Gladman A S, et al., 2014, 3D 86. Wang S, Lee J M and Yeong W Y, 2015, Smart hydro-
bioprinting of vascularized, heterogeneous cell-laden gels for 3D bioprinting. International Journal of Bio-
tissue constructs. Advanced Materials, vol.26(19): printing, vol.1(1): 3–14.
3124–3130. http://dx.doi.org/10.18063/IJB.2015.01.005
http://dx.doi.org/10.1002/adma.201305506 87. Dixon J E, Shah D A, Rogers C, et al., 2014, Combined
76. Norotte C, Marga F S, Niklason L E, et al., 2009, Scaf- hydrogels that switch human pluripotent stem cells from
fold-free vascular tissue engineering using bioprinting. self-renewal to differentiation. Proceedings of the Na-
Biomaterials, vol.30(30): 5910–5917. tional Academy of Sciences, vol.111(15): 5580–5585.
http://dx.doi.org/10.1016/j.biomaterials.2009.06.034 http://dx.doi.org/10.1073/pnas.1319685111
77. Hinton T J, Jallerat Q, Palchesko R N, et al., 2015, Three- 88. Lee H Y, Kim H W, Lee J H, et al., 2015, Controlling
dimensional printing of complex biological structures by oxygen release from hollow microparticles for pro-
freeform reversible embedding of suspended hydrogels. longed cell survival under hypoxic environment. Bio-
Science Advances, vol.1: e1500758. materials, vol.53: 583–591.
http://dx.doi.org/10.1126/sciadv.1500758 http://dx.doi.org/10.1016/j.biomaterials.2015.02.117
78. Gaebel R, Ma N, Liu J, et al., 2011, Patterning human 89. Farris A L, Rindone A N, Grayson W L, 2016, Oxygen
stem cells and endothelial cells with laser printing for delivering biomaterials for tissue engineering. Journal
cardiac regeneration. Biomaterials, vol.32(35): 9218– of Materials Chemistry B, vol.4(20): 3422–3432.
9230. http://dx.doi.org/10.1039/C5TB02635K
36 International Journal of Bioprinting (2016)–Volume 2, Issue 2

