Page 38 - IJB-2-2
P. 38
Bioprinting in cardiovascular tissue engineering: a review
27. Vunjak-Novakovic G, Lui K O, Tandon N, et al., 2011, 37. Shevach M, Maoz B M, Feiner R, et al., 2013, Nanoen-
Bioengineering heart muscle: a paradigm for regenera- gineering gold particle composite fibers for cardiac tis-
tive medicine. Annual Review of Biomedical Engineer- sue engineering. Journal of Materials Chemistry B,
ing, vol.13: 245–267. vol.1(39): 5210–5217.
http://dx.doi.org/10.1146/annurev-bioeng-071910-124701 http://dx.doi.org/10.1039/c3tb20584c
28. LeBlon C E, Pai R, Fodor C R, et al., 2013, In vitro 38. Fleischer S, Feiner R, Shapira A, et al., 2013, Spring-
comparative biodegradation analysis of salt-leached like fibers for cardiac tissue engineering. Biomaterials,
porous polymer scaffolds. Journal of Applied Polymer vol.34(34): 8599-8606.
Science, vol.128(5): 2701–2712. http://dx.doi.org/10.1016/j.biomaterials.2013.07.054
http://dx.doi.org/10.1002/app.38321 39. Engelmayr G C Jr, Cheng M, Bettinger C J, et al., 2008,
29. Sin D, Miao X G, Liu G, et al., 2010, Polyurethane (PU) Accordion-like honeycombs for tissue engineering of
scaffolds prepared by solvent casting/particulate leach- cardiac anisotropy. Nature Materials, vol.7: 1003–1010.
ing (SCPL) combined with centrifugation. Materials http://dx.doi.org/10.1038/nmat2316
Science & Engineering C: Materials for Biological Ap- 40. Zhang D, Shadrin I Y, Lam J, et al., 2013, Tissue-eng-
plications, vol.30(1): 78–85. ineered cardiac patch for advanced functional matura-
http://dx.doi.org/10.1016/j.msec.2009.09.002 tion of human ESC-derived cardiomyocytes. Biomate-
30. Pego A P, Siebum B, Van Luyn M J A, et al., 2003, rials, vol.34(23): 5813–5820.
Preparation of degradable porous structures based on http://dx.doi.org/10.1016/j.biomaterials.2013.04.026
1,3-trimethylene carbonate and D,L-lactide (co)poly- 41. Zimmermann W H, Fink C, Kralisch D, et al., 2000,
mers for heart tissue engineering. Tissue Engineering, Three-dimensional engineered heart tissue from neonat-
vol.9(5): 981–994. al rat cardiac myocytes. Biotechnology and Bioengineer-
http://dx.doi.org/10.1089/107632703322495628 ing, vol.68(1): 106–114.
31. Neal R A, Jean A, Park H, et al., 2013, Three-dim- http://dx.doi.org/10.1002/(SICI)1097-0290(20000405)6
ensional elastomeric scaffolds designed with cardiac- 8:1%3C106::AID-BIT13%3E3.0.CO;2-3
mimetic structural and mechanical features. Tissue En- 42. Zimmermann W H, Melnychenko I, Wasmeier G, et al.,
gineering Part A, vol.19(5-6): 793–807. 2006, Engineered heart tissue grafts improve systolic
http://dx.doi.org/10.1089/ten.tea.2012.0330 and diastolic function in infarcted rat hearts. Natural
32. Kharaziha M, Nikkhah M, Shin S R, et al., 2013, PGS: Medicine, vol.12: 452–458.
Gelatin nanofibrous scaffolds with tunable mechanical http://dx.doi.org/10.1038/nm1394
and structural properties for engineering cardiac tissues. 43. Dvir T, Timko B P, Brigham M D, et al., 2011, Nano-
Biomaterials, vol.34(27): 6355–6366. wired three-dimensional cardiac patches. Nature Nano-
http://dx.doi.org/10.1016/j.biomaterials.2013.04.045 technology, vol.6: 720–725.
33. Orlova Y, Magome N, Liu L, et al., 2011, Electrospun http://dx.doi.org/10.1038/nnano.2011.160
nanofibers as a tool for architecture control in engi- 44. Dohmen P M, Scheckel M, Stein-Konertz M, et al.,
neered cardiac tissue. Biomaterials, vol.32(24): 5615– 2002, In vitro hydrodynamics of a decellularized pul-
5624. monary porcine valve, compared with a glutaraldehyde
http://dx.doi.org/10.1016/j.biomaterials.2011.04.042 and polyurethane heart valve. International Journal of
34. Xu B, Li Y, Fang X, et al., 2013, Mechanically tissue- Artificial Organs, vol.25: 1089–1094.
like elastomeric polymers and their potential as a ve- 45. Juthier F, Vincentelli A, Gaudric J, et al., 2006, Decel-
hicle to deliver functional cardiomyocytes. Journal of lularized heart valve as a scaffold for in vivo recellulari-
the Mechanical Behavior of Biomedical Materials, zation: deleterious effects of granulocyte colony-stim-
vol.28: 354–365. ulating factor. Journal of Thoracic and Cardiovascular
http://dx.doi.org/10.1016/j.jmbbm.2013.06.005 Surgery, vol.131(4): 843–852.
35. Prabhakaran M P, Nair A S, Kai D, et al., 2012, Elec- http://dx.doi.org/10.1016/j.jtcvs.2005.11.037
trospun composite scaffolds containing poly(octanediol- 46. Ott H C, Matthiesen T S, Goh S K, et al., 2008, Perfu-
co-citrate) for cardiac tissue engineering. Biopolymers, sion-decellularized matrix: using nature's platform to
vol.97(7): 529–538. engineer a bioartificial heart. Nature Medicine, vol.14:
http://dx.doi.org/10.1002/bip.22035 213–221.
36. Kai D, Prabhakaran M P, Jin G, et al., 2011, Guided http://dx.doi.org/10.1038/nm1684
orientation of cardiomyocytes on electrospun aligned 47. Song J J and Ott H C, 2011, Organ engineering based on
nanofibers for cardiac tissue engineering. Journal of decellularized matrix scaffolds. Trends in Molecular
Biomedical Materials Research Part B: Applied Bioma- Medicine, vol.17(8): 424–432.
terials, vol.98(2): 379–386. http://dx.doi.org/10.1016/j.molmed.2011.03.005
http://dx.doi.org/10.1002/jbm.b.31862 48. Li Z and Guan J, 2011, Hydrogels for cardiac tissue en-
34 International Journal of Bioprinting (2016)–Volume 2, Issue 2

