Page 38 - IJB-2-2
P. 38

Bioprinting in cardiovascular tissue engineering: a review

              27.  Vunjak-Novakovic G, Lui K O, Tandon N, et al., 2011,   37.  Shevach M, Maoz B M, Feiner R, et al., 2013, Nanoen-
                 Bioengineering heart muscle: a paradigm for regenera-  gineering gold particle composite fibers for cardiac tis-
                 tive medicine. Annual Review of Biomedical Engineer-  sue engineering.  Journal of Materials Chemistry B,
                 ing, vol.13: 245–267.                              vol.1(39): 5210–5217.
                 http://dx.doi.org/10.1146/annurev-bioeng-071910-124701   http://dx.doi.org/10.1039/c3tb20584c
              28.  LeBlon C E, Pai R, Fodor C R,  et al., 2013,  In  vitro   38.  Fleischer S, Feiner R, Shapira A, et al., 2013, Spring-
                 comparative biodegradation analysis of salt-leached   like fibers for cardiac tissue engineering. Biomaterials,
                 porous polymer scaffolds.  Journal  of Applied Polymer   vol.34(34): 8599-8606.
                 Science, vol.128(5): 2701–2712.                    http://dx.doi.org/10.1016/j.biomaterials.2013.07.054
                 http://dx.doi.org/10.1002/app.38321            39.  Engelmayr G C Jr, Cheng M, Bettinger C J, et al., 2008,
              29.  Sin D, Miao X G, Liu G, et al., 2010, Polyurethane (PU)   Accordion-like  honeycombs for tissue engineering of
                 scaffolds prepared by solvent casting/particulate leach-  cardiac anisotropy. Nature Materials, vol.7: 1003–1010.
                 ing (SCPL) combined with centrifugation.  Materials   http://dx.doi.org/10.1038/nmat2316
                 Science & Engineering C: Materials for Biological Ap-  40.  Zhang D, Shadrin I Y, Lam J, et al., 2013, Tissue-eng-
                 plications, vol.30(1): 78–85.                      ineered  cardiac patch for  advanced  functional matura-
                 http://dx.doi.org/10.1016/j.msec.2009.09.002       tion of human  ESC-derived cardiomyocytes.  Biomate-
              30.  Pego A P, Siebum B, Van Luyn M J A,  et al., 2003,   rials, vol.34(23): 5813–5820.
                 Preparation of  degradable porous structures based on   http://dx.doi.org/10.1016/j.biomaterials.2013.04.026
                 1,3-trimethylene carbonate and D,L-lactide (co)poly-  41.  Zimmermann W H, Fink C, Kralisch D,  et al., 2000,
                 mers for heart tissue engineering.  Tissue Engineering,   Three-dimensional engineered heart tissue from neonat-
                 vol.9(5): 981–994.                                 al rat cardiac myocytes. Biotechnology and Bioengineer-
                 http://dx.doi.org/10.1089/107632703322495628       ing, vol.68(1): 106–114.
              31.  Neal R A, Jean A, Park  H, et al., 2013, Three-dim-  http://dx.doi.org/10.1002/(SICI)1097-0290(20000405)6
                 ensional elastomeric scaffolds designed with cardiac-   8:1%3C106::AID-BIT13%3E3.0.CO;2-3
                 mimetic structural and mechanical features. Tissue En-  42.  Zimmermann W H, Melnychenko I, Wasmeier G, et al.,
                 gineering Part A, vol.19(5-6): 793–807.            2006, Engineered heart tissue grafts improve systolic
                 http://dx.doi.org/10.1089/ten.tea.2012.0330        and diastolic function in infarcted rat hearts.  Natural
              32.  Kharaziha M, Nikkhah M, Shin S R, et al., 2013, PGS:   Medicine, vol.12: 452–458.
                 Gelatin nanofibrous scaffolds with  tunable mechanical   http://dx.doi.org/10.1038/nm1394
                 and structural properties for engineering cardiac tissues.   43.  Dvir T, Timko B P, Brigham M D, et al., 2011, Nano-
                 Biomaterials, vol.34(27): 6355–6366.               wired three-dimensional cardiac patches. Nature Nano-
                 http://dx.doi.org/10.1016/j.biomaterials.2013.04.045   technology, vol.6: 720–725.
              33.  Orlova Y, Magome N, Liu L, et al., 2011, Electrospun   http://dx.doi.org/10.1038/nnano.2011.160
                 nanofibers as  a tool for architecture  control in engi-  44.  Dohmen  P M, Scheckel M, Stein-Konertz M,  et al.,
                 neered cardiac tissue.  Biomaterials,  vol.32(24): 5615–   2002,  In vitro  hydrodynamics of a decellularized pul-
                 5624.                                              monary porcine valve, compared with a glutaraldehyde
                 http://dx.doi.org/10.1016/j.biomaterials.2011.04.042   and  polyurethane heart valve.  International Journal  of
              34.  Xu B, Li Y, Fang X, et al., 2013, Mechanically tissue-   Artificial Organs, vol.25: 1089–1094.
                 like  elastomeric polymers and  their potential  as a ve-  45.  Juthier F, Vincentelli A, Gaudric J, et al., 2006, Decel-
                 hicle to deliver functional cardiomyocytes.  Journal of   lularized heart valve as a scaffold for in vivo recellulari-
                 the Mechanical Behavior of  Biomedical Materials,   zation:  deleterious effects of granulocyte colony-stim-
                 vol.28: 354–365.                                   ulating factor. Journal of Thoracic and Cardiovascular
                 http://dx.doi.org/10.1016/j.jmbbm.2013.06.005      Surgery, vol.131(4): 843–852.
              35.  Prabhakaran M P, Nair A S, Kai D, et al., 2012, Elec-  http://dx.doi.org/10.1016/j.jtcvs.2005.11.037
                 trospun composite scaffolds containing poly(octanediol-   46.  Ott H C, Matthiesen T S, Goh S K, et al., 2008, Perfu-
                 co-citrate) for  cardiac tissue engineering.  Biopolymers,   sion-decellularized matrix: using nature's platform to
                 vol.97(7): 529–538.                                engineer a bioartificial heart.  Nature Medicine,  vol.14:
                 http://dx.doi.org/10.1002/bip.22035                213–221.
              36.  Kai D, Prabhakaran  M P, Jin  G,  et al., 2011, Guided   http://dx.doi.org/10.1038/nm1684
                 orientation of cardiomyocytes  on electrospun  aligned   47.  Song J J and Ott H C, 2011, Organ engineering based on
                 nanofibers for  cardiac tissue engineering.  Journal of   decellularized matrix  scaffolds.  Trends in Molecular
                 Biomedical Materials Research Part B: Applied Bioma-  Medicine, vol.17(8): 424–432.
                 terials, vol.98(2): 379–386.                       http://dx.doi.org/10.1016/j.molmed.2011.03.005
                 http://dx.doi.org/10.1002/jbm.b.31862          48.  Li Z and Guan J, 2011, Hydrogels for cardiac tissue en-

            34                          International Journal of Bioprinting (2016)–Volume 2, Issue 2
   33   34   35   36   37   38   39   40   41   42   43