Page 47 - IJB-2-2
P. 47

Behnam  Taidi, Guillaume  Lebernede, Lothar Koch,  et al.

            sensing phenomena. Laser printing has already found     775–818.
            several applications in the biomedical area [18,19] .   http://dx.doi.org/10.1534/genetics.112.144485
                                                                8.   Martínez F and Orús M I, 1991, Interactions between
            Conflict of Interest and Funding                        glucose and inorganic carbon metabolism in Chlorella
                                                                    vulgaris strain UAM 101. Plant Physiology, vol.95(4):
            No conflict of interest was reported by all authors.    1150–1155.
                                                                    http://dx.doi.org/10.1104/pp.95.4.1150
            Acknowledgements                                    9.   Liang Y, Sarkany N and Cui Y, 2009, Biomass and lipid
            This work has benefited from the financial support of   productivity of  Chlorella vulgaris  under autotrophic,
            the LabeX  LaSIPS (ANR-10-LABX-0040-LaSIPS)             heterotrophic and mixotrophic growth conditions.  Bio-
                                                                    technology Letters, vol.31(7): 1043–1049.
            managed by  the French National Research Agency         http://dx.doi.org/10.1007/s10529-009-9975-7
            under the "Investissements d'avenir" program (n°ANR-   10.  Merico A, Sulo P, Piškur J,  et al. 2007, Fermentative
            11-IDEX-0003-02). The Chair  of Biotechnology  of       lifestyle in yeasts belonging to the Saccharomyces com-
            CentraleSupélec, in turn funded by Reims Métropole,     plex. The FEBS Journal, vol.274(4): 976–989.
            Conseil Général de la Marne and the Région Cham-        http://dx.doi.org/10.1111/j.1742-4658.2007.05645.x
            pagne-Ardenne are also acknowledged for their finan-  11.  Rosenfeld E, Beauvoit B, Blondin B, et al. 2003, Oxy-
            cial support of this project.                           gen consumption  by anaerobic  Saccharomyces cerevi-
               Laser Zentrum Hannover  acknowledges financial       siae under enological conditions: Effect on fermentation
            support from Deutsche Forschungsgemeinschaft (DFG),     kinetics.  Applied and Environmental Microbiology,
            the Cluster of Excellence REBIRTH, and Lower Sax-       vol.69(1): 113–121.
                                                                    http://dx.doi.org/10.1128/AEM.69.1.113–121.2003
            ony project Biofabrication for NIFE.
                                                                12.  Ferris C J, Gilmore K J, Wallace G G, et al. 2013, Bio-
            References                                              fabrication: An overview of the approaches used for
                                                                    printing of living cells. Applied Microbiology and Bio-
              1.   Ringeisen B R, Karina R, Fitzgerald L A, et al. 2014,   technology, vol.97(10): 4243–4258.
                 Printing soil: A single-step, high-throughput method to   http://dx.doi.org/10.1007/s00253-013-4853-6
                 isolate micro-organisms and near-neighbour microbial   13.  Clément-Larosière B, Lopes F, Gonçalves A, et al. 2014,
                 consortia from  a  complex environmental sample.  Me-  Carbon dioxide biofixation by Chlorella vulgaris at dif-
                 thods in Ecology and Evolution, vol.6(1): 209–217.   ferent CO 2   concentrations and light intensities.  Engi-
                 http://dx.doi.org/10.1111/2041-210X.12303          neering in Life Sciences, vol.14(5): 509–519.
              2.   Walker D, Hill  G, Wood S,  et al. 2004, Agent-based   http://dx.doi.org/10.1002/elsc.201200212
                 computational modeling of wounded epithelial cell mono-  14.  Koch L, Kuhn S, Sorg H, et al. 2010, Laser printing of
                 layers. IEEE Transactions on Nanobioscience, vol.3(3):   skin  cells and  human  stem  cells.  Tissue Engineering
                 153–163.                                           Part C: Methods, vol.16(5): 847–854.
                 http://dx.doi.org/10.1109/TNB.2004.833680          http://dx.doi.org/10.1089/ten.TEC.2009.0397
              3.   Emonet T, Macal C M, North M J, et al. 2005, Agent-  15.  Unger C, Gruene M, Koch L, et al. 2011, Time-resolved
                 Cell: A digital single-cell assay for bacterial chemotaxis.   imaging of hydrogel printing via laser-induced forward
                 Bioinformatics, vol.21(11): 2714–2721.             transfer. Applied Physics A, vol.103(2): 271–277.
                  http://dx.doi.org/10.1093/bioinformatics/bti391   http://dx.doi.org/10.1007/s00339-010-6030-4
              4.   Zhang L, Wang Z, Sagotsky J A, et al. 2009, Multiscale   16.  Gruene M, Unger C, Koch L,  et al. 2011, Dispensing
                 agent-based cancer modeling. Journal of Mathematical   pico to nanolitre of a natural hydrogel by laser-assisted
                 Biology, vol.58(4–5): 545–559.                     bioprinting. Biomedical Engineering Online, vol.10: 19.
                 http://dx.doi.org/10.1007/s00285-008-0211-1        http://dx.doi.org/10.1186/1475-925X-10-19
              5.   Tang Y and Valocchi A J, 2013, An improved cellular   17.  Monod J, 1949, The growth of bacterial cultures. Annual
                 automaton method to model multispecies biofilms. Wa-  Review of Microbiology, vol.3: 371–394.
                 ter Research, vol.47(15): 5729–5742.               http://dx.doi.org/10.1146/annurev.mi.03.100149.002103
                 http://dx.doi.org/10.1016/j.watres.2013.06.055   18.  Schiele N R,  Corr D T, Huang Y,  et al. 2010, La-
              6.   Gerken H G, Bryon D and Knoshaug E P, 2013,    Enzy-  ser-based direct-write techniques for cell printing. Bio-
                 matic cell wall  degradation of  Chlorella vulgaris  and   fabrication, vol.2(3): 032001.
                 other microalgae for biofuels production.  Planta,   http://dx.doi.org/10.1088/1758-5082/2/3/032001
                 vol.237(1): 239–253.                           19.  Koch L, Deiwick A and Chichkov B, 2014, Laser-based
                 http://dx.doi.org/10.1007/s00425-012-1765-0        3D cell printing for  tissue engineering.  BioNanoMate-
              7.   Orlean P, 2012, Architecture  and biosynthesis of the   rials, vol.15(3–4): 71–78.
                 Saccharomyces cerevisiae cell wall. Genetics, vol.192(3):   http://dx.doi.org/10.1515/bnm-2014-0005

                                        International Journal of Bioprinting (2016)–Volume 2, Issue 2      43
   42   43   44   45   46   47   48   49   50   51   52