Page 47 - IJB-2-2
P. 47
Behnam Taidi, Guillaume Lebernede, Lothar Koch, et al.
sensing phenomena. Laser printing has already found 775–818.
several applications in the biomedical area [18,19] . http://dx.doi.org/10.1534/genetics.112.144485
8. Martínez F and Orús M I, 1991, Interactions between
Conflict of Interest and Funding glucose and inorganic carbon metabolism in Chlorella
vulgaris strain UAM 101. Plant Physiology, vol.95(4):
No conflict of interest was reported by all authors. 1150–1155.
http://dx.doi.org/10.1104/pp.95.4.1150
Acknowledgements 9. Liang Y, Sarkany N and Cui Y, 2009, Biomass and lipid
This work has benefited from the financial support of productivity of Chlorella vulgaris under autotrophic,
the LabeX LaSIPS (ANR-10-LABX-0040-LaSIPS) heterotrophic and mixotrophic growth conditions. Bio-
technology Letters, vol.31(7): 1043–1049.
managed by the French National Research Agency http://dx.doi.org/10.1007/s10529-009-9975-7
under the "Investissements d'avenir" program (n°ANR- 10. Merico A, Sulo P, Piškur J, et al. 2007, Fermentative
11-IDEX-0003-02). The Chair of Biotechnology of lifestyle in yeasts belonging to the Saccharomyces com-
CentraleSupélec, in turn funded by Reims Métropole, plex. The FEBS Journal, vol.274(4): 976–989.
Conseil Général de la Marne and the Région Cham- http://dx.doi.org/10.1111/j.1742-4658.2007.05645.x
pagne-Ardenne are also acknowledged for their finan- 11. Rosenfeld E, Beauvoit B, Blondin B, et al. 2003, Oxy-
cial support of this project. gen consumption by anaerobic Saccharomyces cerevi-
Laser Zentrum Hannover acknowledges financial siae under enological conditions: Effect on fermentation
support from Deutsche Forschungsgemeinschaft (DFG), kinetics. Applied and Environmental Microbiology,
the Cluster of Excellence REBIRTH, and Lower Sax- vol.69(1): 113–121.
http://dx.doi.org/10.1128/AEM.69.1.113–121.2003
ony project Biofabrication for NIFE.
12. Ferris C J, Gilmore K J, Wallace G G, et al. 2013, Bio-
References fabrication: An overview of the approaches used for
printing of living cells. Applied Microbiology and Bio-
1. Ringeisen B R, Karina R, Fitzgerald L A, et al. 2014, technology, vol.97(10): 4243–4258.
Printing soil: A single-step, high-throughput method to http://dx.doi.org/10.1007/s00253-013-4853-6
isolate micro-organisms and near-neighbour microbial 13. Clément-Larosière B, Lopes F, Gonçalves A, et al. 2014,
consortia from a complex environmental sample. Me- Carbon dioxide biofixation by Chlorella vulgaris at dif-
thods in Ecology and Evolution, vol.6(1): 209–217. ferent CO 2 concentrations and light intensities. Engi-
http://dx.doi.org/10.1111/2041-210X.12303 neering in Life Sciences, vol.14(5): 509–519.
2. Walker D, Hill G, Wood S, et al. 2004, Agent-based http://dx.doi.org/10.1002/elsc.201200212
computational modeling of wounded epithelial cell mono- 14. Koch L, Kuhn S, Sorg H, et al. 2010, Laser printing of
layers. IEEE Transactions on Nanobioscience, vol.3(3): skin cells and human stem cells. Tissue Engineering
153–163. Part C: Methods, vol.16(5): 847–854.
http://dx.doi.org/10.1109/TNB.2004.833680 http://dx.doi.org/10.1089/ten.TEC.2009.0397
3. Emonet T, Macal C M, North M J, et al. 2005, Agent- 15. Unger C, Gruene M, Koch L, et al. 2011, Time-resolved
Cell: A digital single-cell assay for bacterial chemotaxis. imaging of hydrogel printing via laser-induced forward
Bioinformatics, vol.21(11): 2714–2721. transfer. Applied Physics A, vol.103(2): 271–277.
http://dx.doi.org/10.1093/bioinformatics/bti391 http://dx.doi.org/10.1007/s00339-010-6030-4
4. Zhang L, Wang Z, Sagotsky J A, et al. 2009, Multiscale 16. Gruene M, Unger C, Koch L, et al. 2011, Dispensing
agent-based cancer modeling. Journal of Mathematical pico to nanolitre of a natural hydrogel by laser-assisted
Biology, vol.58(4–5): 545–559. bioprinting. Biomedical Engineering Online, vol.10: 19.
http://dx.doi.org/10.1007/s00285-008-0211-1 http://dx.doi.org/10.1186/1475-925X-10-19
5. Tang Y and Valocchi A J, 2013, An improved cellular 17. Monod J, 1949, The growth of bacterial cultures. Annual
automaton method to model multispecies biofilms. Wa- Review of Microbiology, vol.3: 371–394.
ter Research, vol.47(15): 5729–5742. http://dx.doi.org/10.1146/annurev.mi.03.100149.002103
http://dx.doi.org/10.1016/j.watres.2013.06.055 18. Schiele N R, Corr D T, Huang Y, et al. 2010, La-
6. Gerken H G, Bryon D and Knoshaug E P, 2013, Enzy- ser-based direct-write techniques for cell printing. Bio-
matic cell wall degradation of Chlorella vulgaris and fabrication, vol.2(3): 032001.
other microalgae for biofuels production. Planta, http://dx.doi.org/10.1088/1758-5082/2/3/032001
vol.237(1): 239–253. 19. Koch L, Deiwick A and Chichkov B, 2014, Laser-based
http://dx.doi.org/10.1007/s00425-012-1765-0 3D cell printing for tissue engineering. BioNanoMate-
7. Orlean P, 2012, Architecture and biosynthesis of the rials, vol.15(3–4): 71–78.
Saccharomyces cerevisiae cell wall. Genetics, vol.192(3): http://dx.doi.org/10.1515/bnm-2014-0005
International Journal of Bioprinting (2016)–Volume 2, Issue 2 43

