Page 70 - IJB-2-2
P. 70
Osteosarcoma growth on trabecular bone mimicking structures manufactured via laser direct write
vol.72(12): 947–954. mers with exceptional mechanical properties. Polymer,
http://dx.doi.org/10.1016/j.reactfunctpolym.2012.06.015 vol.55(17): 4420–4424.
5. Foudazi R, Gokun P, Feke D L, et al., 2013, Chemorhe- http://dx.doi.org/10.1016/j.polymer.2014.07.007
ology of Poly(high internal phase emulsions). Macro- 16. Causa F, Netti P A and Ambrosio L, 2007, A multi-
molecules, vol.46(13): 5393–5396. functional scaffold for tissue regeneration: the need to
http://dx.doi.org/10.1021/ma401157b engineer a tissue analogue. Biomaterials, vol.28(34):
6. Gitli T and Silverstein M S, 2008, Bicontinuous hydro- 5093–5099.
gel-hydrophobic polymer systems through emulsion te- http://dx.doi.org/10.1016/j.biomaterials.2007.07.030
mplated simultaneous polymerizations. Soft Matter, 17. Griffith L G and Swartz M A, 2006, Capturing complex
vol.4(12): 2475–2485. 3D tissue physiology in vitro. Nature Reviews Molecu-
http://dx.doi.org/10.1039/B809346F lar Cell Biology, vol.7: 211–224.
7. Moghbeli M R and Shahabi M, 2011, Morphology and http://dx.doi.org/10.1038/nrm1858
mechanical properties of an elastomeric poly(HIPE) 18. Dalton P D, Vaquette C, Farrugia B L, et al., 2013, Ele-
nanocomposite foam prepared via an emulsion template. ctrospinning and additive manufacturing: converging
Iranian Polymer Journal, vol.20(5): 343–355. technologies. Biomaterials Science, vol.1: 171–185.
8. Cummins D, Wyman P, Duxbury C J, et al., 2007, Syn- http://dx.doi.org/10.1039/C2BM00039C
thesis of functional photopolymerized macroporous po- 19. Ortega I, Ryan A J, Deshpande P, et al., 2013, Combined
lyHIPEs by atom transfer radical polymerization surface microfabrication and electrospinning to produce 3-D arc-
grafting. Chemistry of Materials, vol.19(22): 5285–5292. hitectures for corneal repair. Acta Biomaterialia, vol.9(3):
http://dx.doi.org/10.1021/cm071511o 5511–5520.
9. Hayward A S, Sano N, Przyborski S A, et al. 2013, http://dx.doi.org/10.1016/j.actbio.2012.10.039
Acrylic-acid-functionalized PolyHIPE scaffolds for use 20. Lee M, Dunn J C Y and Wu B M, 2005, Scaffold fabri-
in 3D cell culture. Macromolecular Rapid Communica- cation by indirect three-dimensional printing. Biomate-
tions, vol.34(23–24): 1844–1849. rials, vol.26(20): 4281–4289.
http://dx.doi.org/10.1002/marc.201300709 http://dx.doi.org/10.1016/j.biomaterials.2004.10.040
10. Pierre S J, Thies J C, Dureault A, et al., 2006, Covalent 21. Mohanty S, Sanger K, Heiskanen A, et al., 2016, Fabri-
enzyme immobilization onto photopolymerized highly cation of scalable tissue engineering scaffolds with dual-
porous monoliths. Advanced Materials, vol.18(14): 1822– pore microarchitecture by combining 3D printing and
1826. particle leaching. Materials Science and Engineering: C,
http://dx.doi.org/10.1002/adma.200600293 vol.61: 180–189.
11. Sušec M, Ligon S C, Stampfl J, et al., 2013, Hierarchi- http://dx.doi.org/10.1016/j.msec.2015.12.032
cally porous materials from layer-by-layer photopoly- 22. Ortega I, Dew L, Kelly A G, et al., 2015, Fabrication of
merization of high internal phase emulsions. Macromo- biodegradable synthetic perfusable vascular networks
lecular Rapid Communications, vol.34(11): 938–943. via a combination of electrospinning and robocasting.
http://dx.doi.org/10.1002/marc.201300016 Biomaterials Science, vol.3(4): 592–596.
12. Caldwell S, Johnson D W, Didsbury M P, et al., 2012, http://dx.doi.org/10.1039/C4BM00418C
Degradable emulsion-templated scaffolds for tissue en- 23. Jeffries E M, Nakamura S, Lee K W, et al., 2014, Mi-
gineering from thiol-ene photopolymerisation. Soft Matter, cropatterning electrospun scaffolds to create intrinsic
vol. 8(40): 10344–10351. vascular networks. Macromolecular Bioscience, vol.14(11):
http://dx.doi.org/10.1039/C2SM26250A 1514–1520.
13. Johnson D W, Sherborne C, Didsbury M P, et al., 2013, http://dx.doi.org/10.1002/mabi.201400306
Macrostructuring of emulsion-templated porous poly- 24. Owen R, Sherborne C, Paterson T, et al., 2015, Emul-
mers by 3D laser patterning. Advanced Materials, sion templated scaffolds with tunable mechanical prop-
vol.25(23): 3178–3181. erties for bone tissue engineering. Journal of Mechani-
http://dx.doi.org/10.1002/adma.201300552 cal Behavior of Biomedical Materials, vol.54: 159–172.
14. Lovelady E, Kimmins S D, Wu J, et al., 2011, Prepara- http://dx.doi.org/10.1016/j.jmbbm.2015.09.019
tion of emulsion-templated porous polymers using thiol- 25. Wang A, Paterson T, Owen R, et al., 2016, Photocurable
ene and thiol-yne chemistry. Polymer Chemistry, vol.2(3): high internal phase emulsions (HIPEs) containing hy-
559–562. droxyapatite for additive manufacture of tissue enginee-
http://dx.doi.org/10.1039/C0PY00374C ring scaffolds with multi-scale porosity. Materials Sci-
15. Huš S and Krajnc P, 2014, PolyHIPEs from methyl me- ence and Engineering: C, vol.67: 51–58.
thacrylate: hierarchically structured microcellular poly- http://dx.doi.org/10.1016/j.msec.2016.04.087
76 International Journal of Bioprinting (2016)–Volume 2, Issue 2

