Page 98 - IJB-2-2
P. 98

Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration

                  scaffolds for bone-tissue engineering applications: Proc-  8.
                  essing related challenges and property assessment. Ma-  http://dx.doi.org/10.1007/s11671-010-9751-6
                  terials Science  and Engineering: R:  Reports, vol.103:   26.  Zhang Y, Ali S F, Dervishi E, et al., 2010, Cytotoxicity
                  1–39.                                             effects of graphene and single-wall carbon nanotubes in
                  http://dx.doi.org/10.1016/j.mser.2016.01.001      neural phaeochromocytoma-derived  PC12 cells.  ACS
              16.  Caetano G, Violante R, Sant′Ana A B, et al., 2016, Cel-  Nano, vol.4(6): 3181–3186.
                  lularized versus decellularized scaffolds for bone rege-  http://dx.doi.org/10.1021/nn1007176
                  neration. Materials Letters.                  27.  Park S Y, Park J, Sim S H, et al., 2011, Enhanced diffe-
                  http://dx.doi.org/10.1016/j.matlet.2016.05.152    rentiation of human neural stem cells into neurons on
              17.  Jin G and Li K, 2014, The electrically conductive scaf-  graphene. Advanced Materials, vol.23(36): H263–H267.
                  fold as the skeleton of stem cell niche in regenerative   http://dx.doi.org/10.1002/adma.201101503
                  medicine. Materials Science and Engineering: C, vol.45:   28.  Li N, Zhang X, Song Q, et al., 2011, The promotion of
                  671–681.                                          neurite sprouting and outgrowth of mouse hippocampal
                  http://dx.doi.org/10.1016/j.msec.2014.06.004      cells in culture by graphene substrates.  Biomaterials,
              18.  Lu L, Mende M, Yang X, et al., 2012, Design and vali-  vol.32(35): 9374–9382.
                  dation of a bioreactor for simulating the cardiac niche: a   http://dx.doi.org/10.1016/j.biomaterials.2011.08.065
                  system incorporating  cyclic stretch, electrical stimula-  29.  Woodruff M A and Hutmacher D W, 2010, The return of
                  tion, and constant perfusion. Tissue Engineering Part A,   a forgotten polymer  —  polycaprolactone  in the 21st
                  vol.19(3–4): 403–414.                             century. Progress in Polymer Science, vol.35(10): 1217–
                  http://dx.doi.org/10.1089/ten.tea.2012.0135       1256.
              19.  Maidhof R, Tandon N, Lee E J, et al., 2012, Biomimetic   http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002
                  perfusion and  electrical stimulation applied  in concert   30.  Sasmazel H T, 2011, Novel hybrid scaffolds for the cul-
                  improved the  assembly of engineered cardiac tissue.   tivation of osteoblast  cells.  International Journal  of
                  Journal of Tissue Engineering and Regenerative Medi-  Biological Macromolecules, vol.49(4): 838–846.
                  cine, vol.6(10): e12–e23.                         http://dx.doi.org/10.1016/j.ijbiomac.2011.07.022
                  http://dx.doi.org/10.1002/term.525            31.  Caetano G F, Bártolo P J, Domingos M,  et al., 2015,
              20.  Kuilla  T, Bhadra S, Yao D,  et al., 2010, Recent ad-  Osteogenic differentiation of adipose-derived mesen-
                  vances in graphene based polymer composites. Progress   chymal stem cells into Polycaprolactone (PCL) scaffold.
                  in Polymer Science, vol.35(11): 1350–1375.        Procedia Engineering, vol.110: 59–66.
                  http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005   http://dx.doi.org/10.1016/j.proeng.2015.07.010
              21.  Li M, Guo Y, Wei Y, et al., 2006, Electrospinning po-  32.  Zhang H X, Du G H and Zhang J T, 2004, Assay of mi-
                  lyaniline-contained gelatin nanofibers for  tissue engi-  tochondrial functions by resazurin in vitro. Acta Phar-
                  neering applications.  Biomaterials,  vol.27(13): 2705–   macologica Sinica, vol.25(3): 385–389.
                  2715.                                         33.  Borra R C, Lotufo M A, Gagioti S M, et al., 2009, A
                  http://dx.doi.org/10.1016/j.biomaterials.2005.11.037   simple method to measure cell viability in proliferation
              22.  Kumar S, Azam D, Raj S, et al., 2016, 3D scaffold al-  and  cytotoxicity assays.  Brazilian  Oral Research,
                  ters cellular response to graphene in a polymer compo-  vol.23(3): 255–262.
                  site for orthopedic applications. Journal of Biomedical   http://dx.doi.org/10.1590/S1806-83242009000300006
                  Materials Research  Part B: Applied  Biomaterials,   34.  Vega-Avila E and Pugsley M K, 2011, An overview of
                  vol.104(4): 732–749.                              colorimetric assay methods used to assess survival or
                  http://dx.doi.org/10.1002/jbm.b.33549             proliferation of mammalian cells.  Proceedings of the
              23.  Wang  J K, Xiong  G M, Zhu  M,  et al.,  2015, Poly-  Western Pharmacology Society, vol.54: 10–14.
                  mer-enriched 3D graphene foams for biomedical appli-  35.  Poh P S P, Hutmacher D W, Holzapfel B M, et al., 2016,
                  cations. ACS Applied Materials and Interfaces, vol.7(15):   In vitro and in vivo bone formation potential of surface
                  8275–8283.                                        calcium phosphate-coated polycaprolactone and poly-
                  http://dx.doi.org/10.1021/acsami.5b01440          caprolactone/bioactive glass composite scaffolds.  Acta
              24.  Liao K H, Lin Y S, Macosko C W, et al., 2011, Cyto-  Biomaterialia, vol.30: 319–333.
                  toxicity of graphene oxide and graphene in human eryt-  http://dx.doi.org/10.1016/j.actbio.2015.11.012
                  hrocytes and skin fibroblasts.  ACS Applied Materials   36.  Bártolo P J, Domingos M, Patrício T, et al., 2011, Bio-
                  and Interfaces, vol.3(7): 2607–2615.              fabrication strategies for  tissue engineering, in  Fer-
                  http://dx.doi.org/10.1021/am200428v               nandes P R and Bártolo P J, (eds) Advances on Modeling
              25.  Wang K, Ruan J, Song H, et al., 2011, Biocompatibility   in Tissue Engineering, Springer, Netherlands, 137–176.
                  of graphene oxide. Nanoscale Research Letters, vol.6(1):   http://dx.doi.org/10.1007/978-94-007-1254-6

            104                         International Journal of Bioprinting (2016)–Volume 2, Issue 2
   93   94   95   96   97   98   99   100   101   102   103