Page 98 - IJB-2-2
P. 98
Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration
scaffolds for bone-tissue engineering applications: Proc- 8.
essing related challenges and property assessment. Ma- http://dx.doi.org/10.1007/s11671-010-9751-6
terials Science and Engineering: R: Reports, vol.103: 26. Zhang Y, Ali S F, Dervishi E, et al., 2010, Cytotoxicity
1–39. effects of graphene and single-wall carbon nanotubes in
http://dx.doi.org/10.1016/j.mser.2016.01.001 neural phaeochromocytoma-derived PC12 cells. ACS
16. Caetano G, Violante R, Sant′Ana A B, et al., 2016, Cel- Nano, vol.4(6): 3181–3186.
lularized versus decellularized scaffolds for bone rege- http://dx.doi.org/10.1021/nn1007176
neration. Materials Letters. 27. Park S Y, Park J, Sim S H, et al., 2011, Enhanced diffe-
http://dx.doi.org/10.1016/j.matlet.2016.05.152 rentiation of human neural stem cells into neurons on
17. Jin G and Li K, 2014, The electrically conductive scaf- graphene. Advanced Materials, vol.23(36): H263–H267.
fold as the skeleton of stem cell niche in regenerative http://dx.doi.org/10.1002/adma.201101503
medicine. Materials Science and Engineering: C, vol.45: 28. Li N, Zhang X, Song Q, et al., 2011, The promotion of
671–681. neurite sprouting and outgrowth of mouse hippocampal
http://dx.doi.org/10.1016/j.msec.2014.06.004 cells in culture by graphene substrates. Biomaterials,
18. Lu L, Mende M, Yang X, et al., 2012, Design and vali- vol.32(35): 9374–9382.
dation of a bioreactor for simulating the cardiac niche: a http://dx.doi.org/10.1016/j.biomaterials.2011.08.065
system incorporating cyclic stretch, electrical stimula- 29. Woodruff M A and Hutmacher D W, 2010, The return of
tion, and constant perfusion. Tissue Engineering Part A, a forgotten polymer — polycaprolactone in the 21st
vol.19(3–4): 403–414. century. Progress in Polymer Science, vol.35(10): 1217–
http://dx.doi.org/10.1089/ten.tea.2012.0135 1256.
19. Maidhof R, Tandon N, Lee E J, et al., 2012, Biomimetic http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002
perfusion and electrical stimulation applied in concert 30. Sasmazel H T, 2011, Novel hybrid scaffolds for the cul-
improved the assembly of engineered cardiac tissue. tivation of osteoblast cells. International Journal of
Journal of Tissue Engineering and Regenerative Medi- Biological Macromolecules, vol.49(4): 838–846.
cine, vol.6(10): e12–e23. http://dx.doi.org/10.1016/j.ijbiomac.2011.07.022
http://dx.doi.org/10.1002/term.525 31. Caetano G F, Bártolo P J, Domingos M, et al., 2015,
20. Kuilla T, Bhadra S, Yao D, et al., 2010, Recent ad- Osteogenic differentiation of adipose-derived mesen-
vances in graphene based polymer composites. Progress chymal stem cells into Polycaprolactone (PCL) scaffold.
in Polymer Science, vol.35(11): 1350–1375. Procedia Engineering, vol.110: 59–66.
http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005 http://dx.doi.org/10.1016/j.proeng.2015.07.010
21. Li M, Guo Y, Wei Y, et al., 2006, Electrospinning po- 32. Zhang H X, Du G H and Zhang J T, 2004, Assay of mi-
lyaniline-contained gelatin nanofibers for tissue engi- tochondrial functions by resazurin in vitro. Acta Phar-
neering applications. Biomaterials, vol.27(13): 2705– macologica Sinica, vol.25(3): 385–389.
2715. 33. Borra R C, Lotufo M A, Gagioti S M, et al., 2009, A
http://dx.doi.org/10.1016/j.biomaterials.2005.11.037 simple method to measure cell viability in proliferation
22. Kumar S, Azam D, Raj S, et al., 2016, 3D scaffold al- and cytotoxicity assays. Brazilian Oral Research,
ters cellular response to graphene in a polymer compo- vol.23(3): 255–262.
site for orthopedic applications. Journal of Biomedical http://dx.doi.org/10.1590/S1806-83242009000300006
Materials Research Part B: Applied Biomaterials, 34. Vega-Avila E and Pugsley M K, 2011, An overview of
vol.104(4): 732–749. colorimetric assay methods used to assess survival or
http://dx.doi.org/10.1002/jbm.b.33549 proliferation of mammalian cells. Proceedings of the
23. Wang J K, Xiong G M, Zhu M, et al., 2015, Poly- Western Pharmacology Society, vol.54: 10–14.
mer-enriched 3D graphene foams for biomedical appli- 35. Poh P S P, Hutmacher D W, Holzapfel B M, et al., 2016,
cations. ACS Applied Materials and Interfaces, vol.7(15): In vitro and in vivo bone formation potential of surface
8275–8283. calcium phosphate-coated polycaprolactone and poly-
http://dx.doi.org/10.1021/acsami.5b01440 caprolactone/bioactive glass composite scaffolds. Acta
24. Liao K H, Lin Y S, Macosko C W, et al., 2011, Cyto- Biomaterialia, vol.30: 319–333.
toxicity of graphene oxide and graphene in human eryt- http://dx.doi.org/10.1016/j.actbio.2015.11.012
hrocytes and skin fibroblasts. ACS Applied Materials 36. Bártolo P J, Domingos M, Patrício T, et al., 2011, Bio-
and Interfaces, vol.3(7): 2607–2615. fabrication strategies for tissue engineering, in Fer-
http://dx.doi.org/10.1021/am200428v nandes P R and Bártolo P J, (eds) Advances on Modeling
25. Wang K, Ruan J, Song H, et al., 2011, Biocompatibility in Tissue Engineering, Springer, Netherlands, 137–176.
of graphene oxide. Nanoscale Research Letters, vol.6(1): http://dx.doi.org/10.1007/978-94-007-1254-6
104 International Journal of Bioprinting (2016)–Volume 2, Issue 2

