Page 463 - IJB-10-2
P. 463

International Journal of Bioprinting                       3D-printed bioceramic scaffolds for bone regeneration




            Author contributions                               6.   Dahl MT, Morrison S. Segmental bone defects and the
                                                                  history of bone transport. J Orthop Trauma. 2021;35:S1-7.
            Conceptualization: Koichiro Hayashi                   doi: 10.1097/BOT.0000000000002124
            Data curation: Koichiro Hayashi and Keigo Shibahara  7.   Sparks DS, Saifzadeh S, Savi FM, et al. A preclinical large-
            Formal analysis: Koichiro Hayashi and Keigo Shibahara  animal model for the assessment of critical-size load-bearing
            Funding acquisition: Koichiro Hayashi                 bone defect reconstruction. Nat Protoc. 2020;15:877-924.
            Investigation: Koichiro Hayashi and Keigo Shibahara     doi: 10.1038/s41596-019-0271-2
            Methodology: Koichiro Hayashi
            Project administration: Koichiro Hayashi, Yasuharu   8.   Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing
                                                                  pattern of bone regeneration in membrane-protected
               Nakashima, Kunio Ishikawa                          defects: a histologic study in the canine mandible. Int J Oral
            Supervision: Koichiro Hayashi                         Maxillofac. 1994;9:13-29.
            Validation: Koichiro Hayashi and Keigo Shibahara   https://www.researchgate.net/publication/15047765
            Visualization: Koichiro Hayashi and Keigo Shibahara  9.   Reichert JC, Wullschleger ME, Cipitria A, et al. Custom-
            Writing – original draft: Keigo Shibahara             made composite scaffolds for segmental defect repair in long
            Writing – review & editing: Koichiro Hayashi          bones. Int Ortho. 2011;35:1229-1236.
                                                                  doi: 10.1007/s00264-010-1146-x
            Ethics approval and consent to participate
                                                               10.  Cipitria A, Lange C, Schell H, et al. Porous scaffold
            Animal experiments were approved by the Animal Care   architecture guides tissue formation.  J Bone Miner Res.
            and Use Committee of Kyushu University (approval      2012;27:1275-1288.
            no. A23-007-0).                                       doi: 10.1002/jbmr.1589
                                                               11.  Berner A, Reichert JC, Woodruff MA, et al. Autologous
            Consent for publication                               vs. allogenic mesenchymal progenitor cells for the
                                                                  reconstruction of critical sized segmental tibial bone defects
            Not applicable.
                                                                  in aged sheep. Acta Biomater. 2013;9:7874-7884.
                                                                  doi: 10.1016/j.actbio.2013.04.035
            Availability of data
                                                               12.  Akagi H, Ochi H, Soeta S, et al. A comparison of the process
            The data that support the findings of this study are available   of remodeling of hydroxyapatite/Poly-D/L-lactide and
            from the corresponding author upon reasonable request.  beta-tricalcium phosphate in a loading site. Biomed Res Int.
                                                                  2015;2015:730105.
            References                                            doi: 10.1155/2015/730105
                                                               13.  Song J, Kim J, Woo HM, et al. Repair of rabbit radial bone
            1.   GBD 2019 Fracture Collaborators. Global, regional, and   defects using bone morphogenetic protein-2 combined
               national burden of bone fractures in 204 countries and   with 3D porous silk fibroin/β-tricalcium phosphate hybrid
               territories, 1990–2019: a systematic analysis from the Global   scaffolds. J Biomater Sci Polym Ed. 2018;29:716-729.
               Burden of Disease Study 2019.  Lancet Healthy Longev.      doi: 10.1080/09205063.2018.1438126
               2021;2:e580-e592.
               doi: 10.1016/S2666-7568(21)00172-0              14.  Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable
                                                                  membranes for guided bone regeneration: critical features,
            2.   Shen Y, Huang X, Wu J, et al. The global burden of   potentials, and limitations. ACS Mater Au. 2023;3:394-417.
               osteoporosis, low bone mass, and its related fracture in      doi: 10.1021/acsmaterialsau.3c00013
               204 countries and territories, 1990-2019. Front Endocrinol.
               2022;13.                                        15.  Lee FH, Shen PC, Jou IM, Li C-Y, Hsieh J-L. A population-
               doi: 10.3389/fendo.2022.882241                     based 16-year study on the risk factors of surgical site
                                                                  infection in patients after bone grafting.  Medicine.
            3.   Stewart SK. Fracture non-union: a review of clinical   2015;94:e2034.
               challenges and future research needs.  Malays  Orthop  J.      doi: 10.1097/MD.0000000000002034
               2019;13:1-10.
               doi: 10.5704/MOJ.1907.001                       16.  Rodham PL, Giannoudis VP, Kanakaris NK, Giannoudis PV.
                                                                  Biological aspects to enhance fracture healing. EFORT Open
            4.   Wildemann B, Ignatius A, Leung F, et al. Non-union bone   Rev. 2023;8:264-282.
               fractures. Nat Rev Dis Primers. 2021;7:57.         doi: 10.1530/EOR-23-0047
               doi: 10.1038/s41572-021-00289-8
                                                               17.  Barba A, Diez-Escudero A, Maazouz Y, et al. Osteoinduction
            5.   Leng Y, Yang F, Wang Q, et al. Material-based therapy for   by foamed and 3D-printed calcium phosphate scaffolds:
               bone nonunion. Mater Des. 2019;183:108161.         effect of nanostructure and pore architecture.  ACS Appl
               doi: 10.1016/j.matdes.2019.108161                  Mater Interfaces. 2017;9:41722-41736.


            Volume 10 Issue 2 (2024)                       455                                doi: 10.36922/ijb.2323
   458   459   460   461   462   463   464   465   466   467   468