Page 463 - IJB-10-2
P. 463
International Journal of Bioprinting 3D-printed bioceramic scaffolds for bone regeneration
Author contributions 6. Dahl MT, Morrison S. Segmental bone defects and the
history of bone transport. J Orthop Trauma. 2021;35:S1-7.
Conceptualization: Koichiro Hayashi doi: 10.1097/BOT.0000000000002124
Data curation: Koichiro Hayashi and Keigo Shibahara 7. Sparks DS, Saifzadeh S, Savi FM, et al. A preclinical large-
Formal analysis: Koichiro Hayashi and Keigo Shibahara animal model for the assessment of critical-size load-bearing
Funding acquisition: Koichiro Hayashi bone defect reconstruction. Nat Protoc. 2020;15:877-924.
Investigation: Koichiro Hayashi and Keigo Shibahara doi: 10.1038/s41596-019-0271-2
Methodology: Koichiro Hayashi
Project administration: Koichiro Hayashi, Yasuharu 8. Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing
pattern of bone regeneration in membrane-protected
Nakashima, Kunio Ishikawa defects: a histologic study in the canine mandible. Int J Oral
Supervision: Koichiro Hayashi Maxillofac. 1994;9:13-29.
Validation: Koichiro Hayashi and Keigo Shibahara https://www.researchgate.net/publication/15047765
Visualization: Koichiro Hayashi and Keigo Shibahara 9. Reichert JC, Wullschleger ME, Cipitria A, et al. Custom-
Writing – original draft: Keigo Shibahara made composite scaffolds for segmental defect repair in long
Writing – review & editing: Koichiro Hayashi bones. Int Ortho. 2011;35:1229-1236.
doi: 10.1007/s00264-010-1146-x
Ethics approval and consent to participate
10. Cipitria A, Lange C, Schell H, et al. Porous scaffold
Animal experiments were approved by the Animal Care architecture guides tissue formation. J Bone Miner Res.
and Use Committee of Kyushu University (approval 2012;27:1275-1288.
no. A23-007-0). doi: 10.1002/jbmr.1589
11. Berner A, Reichert JC, Woodruff MA, et al. Autologous
Consent for publication vs. allogenic mesenchymal progenitor cells for the
reconstruction of critical sized segmental tibial bone defects
Not applicable.
in aged sheep. Acta Biomater. 2013;9:7874-7884.
doi: 10.1016/j.actbio.2013.04.035
Availability of data
12. Akagi H, Ochi H, Soeta S, et al. A comparison of the process
The data that support the findings of this study are available of remodeling of hydroxyapatite/Poly-D/L-lactide and
from the corresponding author upon reasonable request. beta-tricalcium phosphate in a loading site. Biomed Res Int.
2015;2015:730105.
References doi: 10.1155/2015/730105
13. Song J, Kim J, Woo HM, et al. Repair of rabbit radial bone
1. GBD 2019 Fracture Collaborators. Global, regional, and defects using bone morphogenetic protein-2 combined
national burden of bone fractures in 204 countries and with 3D porous silk fibroin/β-tricalcium phosphate hybrid
territories, 1990–2019: a systematic analysis from the Global scaffolds. J Biomater Sci Polym Ed. 2018;29:716-729.
Burden of Disease Study 2019. Lancet Healthy Longev. doi: 10.1080/09205063.2018.1438126
2021;2:e580-e592.
doi: 10.1016/S2666-7568(21)00172-0 14. Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable
membranes for guided bone regeneration: critical features,
2. Shen Y, Huang X, Wu J, et al. The global burden of potentials, and limitations. ACS Mater Au. 2023;3:394-417.
osteoporosis, low bone mass, and its related fracture in doi: 10.1021/acsmaterialsau.3c00013
204 countries and territories, 1990-2019. Front Endocrinol.
2022;13. 15. Lee FH, Shen PC, Jou IM, Li C-Y, Hsieh J-L. A population-
doi: 10.3389/fendo.2022.882241 based 16-year study on the risk factors of surgical site
infection in patients after bone grafting. Medicine.
3. Stewart SK. Fracture non-union: a review of clinical 2015;94:e2034.
challenges and future research needs. Malays Orthop J. doi: 10.1097/MD.0000000000002034
2019;13:1-10.
doi: 10.5704/MOJ.1907.001 16. Rodham PL, Giannoudis VP, Kanakaris NK, Giannoudis PV.
Biological aspects to enhance fracture healing. EFORT Open
4. Wildemann B, Ignatius A, Leung F, et al. Non-union bone Rev. 2023;8:264-282.
fractures. Nat Rev Dis Primers. 2021;7:57. doi: 10.1530/EOR-23-0047
doi: 10.1038/s41572-021-00289-8
17. Barba A, Diez-Escudero A, Maazouz Y, et al. Osteoinduction
5. Leng Y, Yang F, Wang Q, et al. Material-based therapy for by foamed and 3D-printed calcium phosphate scaffolds:
bone nonunion. Mater Des. 2019;183:108161. effect of nanostructure and pore architecture. ACS Appl
doi: 10.1016/j.matdes.2019.108161 Mater Interfaces. 2017;9:41722-41736.
Volume 10 Issue 2 (2024) 455 doi: 10.36922/ijb.2323

