Page 464 - IJB-10-2
P. 464
International Journal of Bioprinting 3D-printed bioceramic scaffolds for bone regeneration
doi: 10.1021/acsami.7b14175 28. Julien A, Kanagalingam A, Martínez-Sarrà E, et al. Direct
contribution of skeletal muscle mesenchymal progenitors to
18. Nakamura T, Matsumine A, Asanuma K, Matsubara T, Sudo
A. Treatment of bone defect with calcium phosphate cement bone repair. Nat Commun. 2021;12:2860.
subsequent to tumor curettage in pediatric patients. Oncol doi: 10.1038/s41467-021-22842-5
Lett. 2016;11:247-252. 29. Hayashi K, Yanagisawa T, Kishida R, Ishikawa K. Effects of
doi: 10.3892/ol.2015.3855 scaffold shape on bone regeneration: tiny shape differences
affect the entire system. ACS Nano. 2022;16:11755-11768.
19. Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Honeycomb
blocks composed of carbonate apatite, β-tricalcium doi: 10.1021/acsnano.2c03776
phosphate, and hydroxyapatite for bone regeneration: effects 30. Boudaoud A, Burian A, Borowska-Wykrȩt D, et al.
of composition on biological responses. Mater Today Bio. FibrilTool, an ImageJ plug-in to quantify fibrillar structures
2019;4:100031. in raw microscopy images. Nat Protoc. 2014;9:457-463.
doi: 10.1016/j.mtbio.2019.100031 doi: 10.1038/nprot.2014.024
20. Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Granular 31. Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot
honeycombs composed of carbonate apatite, hydroxyapatite, NM, Yener B. Histopathological image analysis: a review.
and β-tricalcium phosphate as bone graft substitutes: effects IEEE Rev Biomed Eng. 2009;2:147-171.
of composition on bone formation and maturation. ACS https://doi.org /10.1109/RBME.2009.2034865
Appl Bio Mater. 2020;3:1787-1795. 32. Kanda Y. Investigation of the freely available easy-to-
doi: 10.1021/acsabm.0c00060
use software “EZR” for medical statistics. Bone Marrow
21. Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A, Transplant. 2013;48:452-458.
Ishikawa K. Honeycomb scaffolds capable of achieving doi: 10.1038/bmt.2012.244
barrier membrane-free guided bone regeneration. Mater 33. Ren F, Ding Y, Leng Y. Infrared spectroscopic characterization
Adv. 2021;2:7638-7649. of carbonated apatite: a combined experimental and
doi: 10.1039/d1ma00698c
computational study. J Biomed Mater Res A. 2014;
22. Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A, 102:496-505.
Ishikawa K. Structurally optimized honeycomb scaffolds doi: 10.1002/jbm.a.34720
with outstanding ability for vertical bone augmentation. J 34. Madupalli H, Pavan B, Tecklenburg MMJ. Carbonate
Adv Res. 2022;41:101-112. substitution in the mineral component of bone:
doi: 10.1016/j.jare.2021.12.010
discriminating the structural changes, simultaneously
23. Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Channel imposed by carbonate in A and B sites of apatite. J Solid State
aperture characteristics of carbonate apatite honeycomb Chem. 2017;255:27-35.
scaffolds affect ingrowths of bone and fibrous tissues in doi: 10.1016/j.jssc.2017.07.025
vertical bone augmentation. Bioengineering. 2022;9(11):627. 35. Jodati H, Yılmaz B, Evis Z. A review of bioceramic porous
doi: 10.3390/bioengineering9110627
scaffolds for hard tissue applications: effects of structural
24. Feng YF, Wang L, Li X, et al. Influence of architecture features. Ceram Int. 2020;46:15725-15739.
of β-tricalcium phosphate scaffolds on biological doi: 10.1016/j.ceramint.2020.03.192
performance in repairing segmental bone defects. PLoS One. 36. Hara K, Hellem E, Yamada S, et al. Efficacy of treating
2012;7:e49955. segmental bone defects through endochondral ossification:
doi: 10.1371/journal.pone.0049955
3D printed designs and bone metabolic activities. Mater
25. Petersen A, Princ A, Korus G, et al. A biomaterial with a Today Bio. 2022;14:100237.
channel-like pore architecture induces endochondral doi: 10.1016/j.mtbio.2022.100237
healing of bone defects. Nat Commun. 2018;9:4430. 37. Pan Q, Li Y, Xu J, et al. The effects of tubular structure
doi: 10.1038/s41467-018-06504-7
on biomaterial aided bone regeneration in distraction
26. Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Supporting osteogenesis. J Orthop Transl. 2020;25:80-86.
information superiority of triply periodic minimal surface doi: 10.1016/j.jot.2020.09.009
gyroid structure to strut-based grid structure in both 38. Al-Maharma AY, Patil SP, Markert B. Effects of porosity
strength and bone regeneration. ACS Appl Mater Interfaces. on the mechanical properties of additively manufactured
2023;15:34570-34577. components: a critical review. Mater Res Express.
doi: 10.1021/acsami.3c06263
2020;7:122001.
27. Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. doi: 10.1088/2053-1591/abcc5d
Honeycomb scaffold-guided bone reconstruction of critical- 39. Hannink G, Arts JJC. Bioresorbability, porosity and
sized defects in rabbit ulnar shafts. ACS Appl Bio Mater. mechanical strength of bone substitutes: what is optimal for
2021;4:6821-6831. bone regeneration? Injury. 2011;42:S22-S25.
doi: 10.1021/acsabm.1c00533
Volume 10 Issue 2 (2024) 456 doi: 10.36922/ijb.2323

