Page 464 - IJB-10-2
P. 464

International Journal of Bioprinting                       3D-printed bioceramic scaffolds for bone regeneration




               doi: 10.1021/acsami.7b14175                     28.  Julien A, Kanagalingam A, Martínez-Sarrà E, et al. Direct
                                                                  contribution of skeletal muscle mesenchymal progenitors to
            18.  Nakamura T, Matsumine A, Asanuma K, Matsubara T, Sudo
               A. Treatment of bone defect with calcium phosphate cement   bone repair. Nat Commun. 2021;12:2860.
               subsequent to tumor curettage in pediatric patients. Oncol      doi: 10.1038/s41467-021-22842-5
               Lett. 2016;11:247-252.                          29.  Hayashi K, Yanagisawa T, Kishida R, Ishikawa K. Effects of
               doi: 10.3892/ol.2015.3855                          scaffold shape on bone regeneration: tiny shape differences
                                                                  affect the entire system. ACS Nano. 2022;16:11755-11768.
            19.  Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Honeycomb
               blocks composed of carbonate apatite, β-tricalcium      doi: 10.1021/acsnano.2c03776
               phosphate, and hydroxyapatite for bone regeneration: effects   30.  Boudaoud  A,  Burian  A,  Borowska-Wykrȩt  D,  et  al.
               of composition on biological responses.  Mater Today Bio.   FibrilTool, an ImageJ plug-in to quantify fibrillar structures
               2019;4:100031.                                     in raw microscopy images. Nat Protoc. 2014;9:457-463.
               doi: 10.1016/j.mtbio.2019.100031                   doi: 10.1038/nprot.2014.024
            20.  Hayashi  K,  Kishida  R,  Tsuchiya  A,  Ishikawa  K.  Granular   31.  Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot
               honeycombs composed of carbonate apatite, hydroxyapatite,   NM, Yener B. Histopathological image analysis: a review.
               and β-tricalcium phosphate as bone graft substitutes: effects   IEEE Rev Biomed Eng. 2009;2:147-171.
               of  composition  on  bone  formation  and  maturation.  ACS   https://doi.org /10.1109/RBME.2009.2034865
               Appl Bio Mater. 2020;3:1787-1795.               32.  Kanda Y. Investigation of the freely available easy-to-
               doi: 10.1021/acsabm.0c00060
                                                                  use software “EZR” for medical statistics.  Bone Marrow
            21.  Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A,    Transplant. 2013;48:452-458.
               Ishikawa K. Honeycomb scaffolds capable of achieving      doi: 10.1038/bmt.2012.244
               barrier membrane-free guided bone regeneration.  Mater   33.  Ren F, Ding Y, Leng Y. Infrared spectroscopic characterization
               Adv. 2021;2:7638-7649.                             of carbonated apatite: a combined experimental and
               doi: 10.1039/d1ma00698c
                                                                  computational study.  J Biomed Mater Res A. 2014;
            22.  Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A,   102:496-505.
               Ishikawa K. Structurally optimized honeycomb scaffolds      doi: 10.1002/jbm.a.34720
               with outstanding ability for vertical bone augmentation. J   34.  Madupalli H, Pavan B, Tecklenburg MMJ. Carbonate
               Adv Res. 2022;41:101-112.                          substitution in  the  mineral  component of  bone:
               doi: 10.1016/j.jare.2021.12.010
                                                                  discriminating the structural changes, simultaneously
            23.  Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Channel   imposed by carbonate in A and B sites of apatite. J Solid State
               aperture characteristics of carbonate apatite honeycomb   Chem. 2017;255:27-35.
               scaffolds  affect  ingrowths  of  bone and  fibrous  tissues  in      doi: 10.1016/j.jssc.2017.07.025
               vertical bone augmentation. Bioengineering. 2022;9(11):627.  35.  Jodati H, Yılmaz B, Evis Z. A review of bioceramic porous
               doi: 10.3390/bioengineering9110627
                                                                  scaffolds for hard tissue applications: effects of structural
            24.  Feng YF, Wang L, Li X, et al. Influence of architecture   features. Ceram Int. 2020;46:15725-15739.
               of β-tricalcium phosphate scaffolds on biological      doi: 10.1016/j.ceramint.2020.03.192
               performance in repairing segmental bone defects. PLoS One.   36.  Hara K, Hellem E, Yamada S, et al. Efficacy of treating
               2012;7:e49955.                                     segmental bone defects through endochondral ossification:
               doi: 10.1371/journal.pone.0049955
                                                                  3D  printed  designs  and  bone  metabolic  activities.  Mater
            25.  Petersen A, Princ A, Korus G, et al. A biomaterial with a   Today Bio. 2022;14:100237.
               channel-like pore architecture induces endochondral      doi: 10.1016/j.mtbio.2022.100237
               healing of bone defects. Nat Commun. 2018;9:4430.  37.  Pan Q, Li Y, Xu J, et al. The effects of tubular structure
               doi: 10.1038/s41467-018-06504-7
                                                                  on  biomaterial  aided bone  regeneration  in distraction
            26.  Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Supporting   osteogenesis. J Orthop Transl. 2020;25:80-86.
               information superiority of triply periodic minimal surface      doi: 10.1016/j.jot.2020.09.009
               gyroid structure to strut-based grid structure in both   38.  Al-Maharma AY, Patil SP, Markert B. Effects of porosity
               strength and bone regeneration. ACS Appl Mater Interfaces.   on the mechanical properties of additively manufactured
               2023;15:34570-34577.                               components:  a critical  review.  Mater Res Express.
               doi: 10.1021/acsami.3c06263
                                                                  2020;7:122001.
            27.  Shibahara  K, Hayashi K,  Nakashima Y,  Ishikawa K.      doi: 10.1088/2053-1591/abcc5d
               Honeycomb scaffold-guided bone reconstruction of critical-  39.  Hannink G, Arts JJC. Bioresorbability, porosity and
               sized defects in rabbit ulnar shafts.  ACS Appl Bio Mater.   mechanical strength of bone substitutes: what is optimal for
               2021;4:6821-6831.                                  bone regeneration? Injury. 2011;42:S22-S25.
               doi: 10.1021/acsabm.1c00533


            Volume 10 Issue 2 (2024)                       456                                doi: 10.36922/ijb.2323
   459   460   461   462   463   464   465   466   467   468   469