Page 465 - IJB-10-2
P. 465
International Journal of Bioprinting 3D-printed bioceramic scaffolds for bone regeneration
doi: 10.1016/j.injury.2011.06.008 doi: 10.1021/acsami.0c07304
40. Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. 43. Zhao YN, Fan JJ, Li ZQ, Liu YW, Wu YP, Liu J. Effects of pore
Reconstruction of load-bearing segmental bone defects size on the osteoconductivity and mechanical properties of
using carbonate apatite honeycomb blocks. ACS Mater Au. calcium phosphate cement in a rabbit model. Artif Organs.
2023;3:321-336. 2017;41:199-204.
doi: 10.1021/acsmaterialsau.3c00008 doi: 10.1111/aor.12742
41. Lu T, Feng S, He F, Ye J. Enhanced osteogenesis of 44. Van Bael S, Chai YC, Truscello S, et al. The effect of pore
honeycomb β-tricalcium phosphate scaffold by construction geometry on the in vitro biological behavior of human
of interconnected pore structure: an in vivo study. J Biomed periosteum-derived cells seeded on selective laser-melted
Mater Res A. 2020;108:645-653. Ti6Al4V bone scaffolds. Acta Biomater. 2012;8:2824-2834.
doi: 10.1002/jbm.a.36844 doi: 10.1016/j.actbio.2012.04.001
42. He F, Lu T, Fang X, et al. Novel extrusion-microdrilling 45. Hoerth RM, Seidt BM, Shah M, et al. Mechanical and
approach to fabricate calcium phosphate-based bioceramic structural properties of bone in non-critical and critical
scaffolds enabling fast bone regeneration. ACS Appl Mater healing in rat. Acta Biomater. 2014;10:4009-4019.
Interfaces. 2020;12:32340-32351. doi: 10.1016/j.actbio.2014.06.003
Volume 10 Issue 2 (2024) 457 doi: 10.36922/ijb.2323

