Page 58 - IJB-3-2
P. 58
Hybrid three-dimensional (3D) bioprinting of retina equivalent for ocular research
macular degeneration in Singapore. Singapore Medical with tunable stiffness. Journal of Biomedical Materials
Journal, vol.50(2): 126–131. Research Part A, vol.105(4): 1009–1018.
21. Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid proto- https://dx.doi.org/10.1002/jbm.a.35971
typing in tissue engineering: Challenges and potential. Trends 29. Yang Y, et al., 2009, A novel mixed micelle gel with thermo-
in Biotechnology, vol.22(12): 643–652. sensitive property for the local delivery of docetaxel. Journal
https://dx.doi.org/10.1016/j.tibtech.2004.10.004 of Controlled Release, vol.135(2): 175–182.
22. Chua C K, Yeong W Y, Leong K F, 2005, Rapid prototyping https://dx.doi.org/10.1016/j.jconrel.2009.01.007
in tissue engineering: A state-of-the-art report. In: Virtual 30. Jonas J B, Schneider U, Naumann G O H, 1992, Count and
modeling and rapid manufacturing: Advanced research density of human retinal photoreceptors. Graefe’s Archive for
in virtual and rapid prototyping, Proceedings of the 2nd Clinical and Experimental Ophthalmology, vol.230(6): 505
International Conference on Advanced Research and Rapid –510.
Prototyping; London, UK: Taylor & Francis Group, 19–27. https://dx.doi.org/10.1007/BF00181769
23. Mironov V, Zhang J, Gentile C, et al., 2009. Designer 31. Bogenmann E, Lochrie M A, Simon M I, 1988, Cone
‘blueprint’ for vascular trees: Morphology evolution of cell-specific genes expressed in retinoblastoma. Science,
vascular tissue constructs. Virtual and Physical Prototyping, vol.240(4848): 76–78.
vol.4(2): 63–74. https://dx.doi.org/10.1126/science.2451289
https://dx.doi.org/10.1080/17452750802657202 32. Di Polo A and Farber D B, 1995, Rod photoreceptor-specific
24. Bártolo P J, Chua C K, Almeida H A, et al., 2009, Biomanu- gene expression in human retinoblastoma cells. Proceedings
facturing for tissue engineering: Present and future trends. of the National Academy of Sciences of the United States,
Virtual and Physical Prototyping, vol.4(4): 203–216. vol.92(9): 4016–4020.
https://dx.doi.org/10.1080/17452750903476288 https://dx.doi.org/10.1073/pnas.92.9.4016
25. Dalgarno K W, Pallari J H, Woodburn J, et al., 2006, Mass 33. Wiechmann A F, 1996, Recoverin in cultured human retino-
customization of medical devices and implants: State of the blastoma cells: Enhanced expression during morphological
art and future directions. Virtual and Physical Prototyping, differentiation. Journal of Neurochemistry, vol.67(1): 105–
vol.1(3): 137–145. 110.
https://dx.doi.org/10.1080/17452750601092031 https://dx.doi.org/10.1046/j.1471-4159.1996.67010105.x
26. Rizzolo L J, 2014, Barrier properties of cultured retinal 34. Messmer E P, Font R L, Kirkpatrick J B, et al., 1985, Immuno-
pigment epithelium. Experimental Eye Research, vol.126: histochemical demonstration of neuronal and astro cytic diffe-
16–26. ren tiation in retinoblastoma. Ophthalmology, vol.92(1): 167–
https://dx.doi.org/10.1016/j.exer.2013.12.018 173.
27. Blanch R J, Ahmed Z, Berry M, et al., 2012, Animal models https://dx.doi.org/10.1016/S0161-6420(85)34076-9
of retinal injury. Investigative Ophthalmology & Visual 35. Tan E, Ding X Q, Saadi A, et al., 2004, Expression of cone-
Science, vol.53(6): 2913–2920. photoreceptor–specific antigens in a cell line derived from
https://dx.doi.org/10.1167/iovs.11-8564 retinal tumors in transgenic mice. Investigative Ophthalmology
28. Shi P, Laude A, Yeong W Y, 2017, Investigation of cell via- & Visual Science, vol.45(3): 764–768.
bility and morphology in 3D bio-printed alginate constructs https://dx.doi.org/10.1167/iovs.03-1114
146 International Journal of Bioprinting (2017)–Volume 3, Issue 2

