Page 432 - IJB-10-3
P. 432

International Journal of Bioprinting                         Expanding 3D cell proliferation with DLP bioprinting




            30.  Xia P, Luo Y. Vascularization in tissue engineering: the   42.  Randhawa  A,  Dutta  SD,  Ganguly  K,  Patel  DK,  Patil  TV,
               architecture cues of pores in scaffolds. J Biomed Mater Res   Lim K-T. Recent advances in 3D printing of photocurable
               Part B App Biomater. 2022;110(5):1206-1214.        polymers: types, mechanism, and tissue engineering
               doi: 10.1002/jbm.b.34979                           application. Macromol Biosci. 2023;23(1):2200278.
            31.  Seo  JW,  Kim  GM,  Choi  Y,  Cha  JM,  Bae  H.  Improving      doi: 10.1002/mabi.202200278
               printability of digital-light-processing 3D bioprinting   43.  Huh J, Moon Y-W, Park J,  Atala A, Yoo JJ, Lee SJ.
               via photoabsorber pigment adjustment.  Int  J  Mol Sci.   Combinations of photoinitiator and UV absorber for
               2022;23(10):5428.                                  cell-based digital light processing (DLP) bioprinting.
               doi: 10.3390/ijms23105428                          Biofabrication. 2021;13(3):034103.
            32.  Chavez T, Gerecht S. Engineering of the microenvironment      doi: 10.1088/1758-5090/abfd7a
               to accelerate vascular regeneration.  Trends Mol Med.   44.  Chen Y, Zhang J, Liu X,  et al. Noninvasive in vivo 3D
               2023;29(1):35-47.                                  bioprinting. Sci Adv. 2020;6(23):eaba7406.
               doi: 10.1016/j.molmed.2022.10.005                  doi: 10.1126/sciadv.aba7406
            33.  de Souza A, Martignago CCS, Santo GdE, et al. 3D printed   45.  Goodarzi  Hosseinabadi  H,  Dogan  E,  Miri  AK,  Ionov  L.
               wound constructs for skin tissue engineering: a systematic   Digital light processing bioprinting advances for microtissue
               review in experimental animal models. J Biomed Mater Res   models. ACS Biomater Sci Eng. 2022;8(4):1381-1395.
               Part B Appl Biomater. 2023;111(7):1419-1433.       doi: 10.1021/acsbiomaterials.1c01509
               doi: 10.1002/jbm.b.35237
                                                               46.  Alberts B, Johnson A, Lewis J, et al. The extracellular matrix
            34.  Jodat YA, Zhang T, Tanoury Z,  et al.  hiPSC-Derived 3D   of animals. In: Molecular Biology of the Cell. 4th ed. New
               Bioprinted Skeletal Muscle Tissue Implants Regenerate   York: Garland Science; 2002.
               Skeletal Muscle Following Volumetric Muscle Loss. Research
               Square Publications; 2021.                      47.  Lee  RC,  Ping  J.  Calcium  antagonists  retard  extracellular
               doi: 10.21203/rs.3.rs-146091/v1                    matrix  production  in  connective  tissue  equivalent.  J Surg
                                                                  Res. 1990;49(5):463-466.
            35.  Ciolacu DE, Nicu R, Ciolacu F. Natural polymers in heart      doi: 10.1016/0022-4804(90)90197-A
               valve tissue engineering: strategies, advances and challenges.
               Biomedicines. 2022;10(5):1095.                  48.  Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast
               doi: 10.3390/biomedicines10051095                  growth factor expression during skeletal fracture healing in
                                                                  mice. Dev Dyn. 2009;238(3):766-774.
            36.  Yan J, Li Z, Guo J, Liu S, Guo J. Organ-on-a-chip: a new tool      doi: 10.1002/dvdy.21882
               for in vitro research. Biosens Bioelectron. 2022;216:114626.
               doi: 10.1016/j.bios.2022.114626                 49.  Ross R. The fibroblast and wound repair.  Biol  Rev.
                                                                  1968;43(1):51-91.
            37.  Jakab K, Marga F, Kaesser R, et al. Non-medical applications      doi: 10.1111/j.1469-185X.1968.tb01109.x
               of tissue engineering: biofabrication of a leather-like
               material. Mater Today Sustain. 2019;5:100018.   50.  Darby IA, Hewitson TD. Fibroblast differentiation in wound
               doi: 10.1016/j.mtsust.2019.100018                  healing and fibrosis. Int Rev Cytol. 2007;257:143-179.
                                                                  doi: 10.1016/S0074-7696(07)57004-X
            38.  Decante G, Costa JB, Silva-Correia J,  Collins MN, Reis
               RL, Oliveira JM. Engineering bioinks for 3D bioprinting.   51.  Seo  JW,  Moon  JH,  Jang  G,  et  al.  Cell-laden  gelatin
               Biofabrication. 2021;13(3):032001.                 methacryloyl bioink for the fabrication of Z-stacked hydrogel
               doi: 10.1088/1758-5090/abec2c                      scaffolds for tissue engineering. Polymers. 2020;12(12):3027.
                                                                  doi: 10.3390/polym12123027
            39.  Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek
               RA, Opdenakker G. Biochemistry and molecular biology of   52.  Leu Alexa R, Iovu H, Ghitman J, et al. 3D-printed gelatin
               gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit   methacryloyl-based scaffolds with potential application in
               Rev Biochem Mol Biol. 2002;37(6):375-536.          tissue engineering. Polymers. 2021;13(5):727.
               doi: 10.1080/10409230290771546                     doi: 10.3390/polym13050727
            40.  Nichol JW, Koshy ST, Bae H,  Hwang CM, Yamanlar S,   53.  Zu G, Meijer M, Mergel O, Zhang H, van Rijn P. 3D-printable
               Khademhosseini A. Cell-laden microengineered gelatin   hierarchical nanogel-GelMA composite hydrogel system.
               methacrylate  hydrogels.  Biomaterials.  2010;31(21):   Polymers. 2021;13(15):2508.
               5536-5544.                                         doi: 10.3390/polym13152508
               doi: 10.1016/j.biomaterials.2010.03.064         54.  Ma C, Choi J-B, Jang Y-S,  et al. Mammalian and fish
            41.  Yoon HJ, Shin SR, Cha JM,  et al. Cold water fish gelatin   gelatin methacryloyl–alginate interpenetrating polymer
               methacryloyl hydrogel for tissue engineering application.   network hydrogels for tissue engineering.  ACS  Omega.
               PLOS ONE. 2016;11(10):e0163902.                    2021;6(27):17433-17441.
               doi: 10.1371/journal.pone.0163902                  doi: 10.1021/acsomega.1c01806


            Volume 10 Issue 3 (2024)                       424                                doi: 10.36922/ijb.2219
   427   428   429   430   431   432   433   434   435   436   437