Page 432 - IJB-10-3
P. 432
International Journal of Bioprinting Expanding 3D cell proliferation with DLP bioprinting
30. Xia P, Luo Y. Vascularization in tissue engineering: the 42. Randhawa A, Dutta SD, Ganguly K, Patel DK, Patil TV,
architecture cues of pores in scaffolds. J Biomed Mater Res Lim K-T. Recent advances in 3D printing of photocurable
Part B App Biomater. 2022;110(5):1206-1214. polymers: types, mechanism, and tissue engineering
doi: 10.1002/jbm.b.34979 application. Macromol Biosci. 2023;23(1):2200278.
31. Seo JW, Kim GM, Choi Y, Cha JM, Bae H. Improving doi: 10.1002/mabi.202200278
printability of digital-light-processing 3D bioprinting 43. Huh J, Moon Y-W, Park J, Atala A, Yoo JJ, Lee SJ.
via photoabsorber pigment adjustment. Int J Mol Sci. Combinations of photoinitiator and UV absorber for
2022;23(10):5428. cell-based digital light processing (DLP) bioprinting.
doi: 10.3390/ijms23105428 Biofabrication. 2021;13(3):034103.
32. Chavez T, Gerecht S. Engineering of the microenvironment doi: 10.1088/1758-5090/abfd7a
to accelerate vascular regeneration. Trends Mol Med. 44. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D
2023;29(1):35-47. bioprinting. Sci Adv. 2020;6(23):eaba7406.
doi: 10.1016/j.molmed.2022.10.005 doi: 10.1126/sciadv.aba7406
33. de Souza A, Martignago CCS, Santo GdE, et al. 3D printed 45. Goodarzi Hosseinabadi H, Dogan E, Miri AK, Ionov L.
wound constructs for skin tissue engineering: a systematic Digital light processing bioprinting advances for microtissue
review in experimental animal models. J Biomed Mater Res models. ACS Biomater Sci Eng. 2022;8(4):1381-1395.
Part B Appl Biomater. 2023;111(7):1419-1433. doi: 10.1021/acsbiomaterials.1c01509
doi: 10.1002/jbm.b.35237
46. Alberts B, Johnson A, Lewis J, et al. The extracellular matrix
34. Jodat YA, Zhang T, Tanoury Z, et al. hiPSC-Derived 3D of animals. In: Molecular Biology of the Cell. 4th ed. New
Bioprinted Skeletal Muscle Tissue Implants Regenerate York: Garland Science; 2002.
Skeletal Muscle Following Volumetric Muscle Loss. Research
Square Publications; 2021. 47. Lee RC, Ping J. Calcium antagonists retard extracellular
doi: 10.21203/rs.3.rs-146091/v1 matrix production in connective tissue equivalent. J Surg
Res. 1990;49(5):463-466.
35. Ciolacu DE, Nicu R, Ciolacu F. Natural polymers in heart doi: 10.1016/0022-4804(90)90197-A
valve tissue engineering: strategies, advances and challenges.
Biomedicines. 2022;10(5):1095. 48. Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast
doi: 10.3390/biomedicines10051095 growth factor expression during skeletal fracture healing in
mice. Dev Dyn. 2009;238(3):766-774.
36. Yan J, Li Z, Guo J, Liu S, Guo J. Organ-on-a-chip: a new tool doi: 10.1002/dvdy.21882
for in vitro research. Biosens Bioelectron. 2022;216:114626.
doi: 10.1016/j.bios.2022.114626 49. Ross R. The fibroblast and wound repair. Biol Rev.
1968;43(1):51-91.
37. Jakab K, Marga F, Kaesser R, et al. Non-medical applications doi: 10.1111/j.1469-185X.1968.tb01109.x
of tissue engineering: biofabrication of a leather-like
material. Mater Today Sustain. 2019;5:100018. 50. Darby IA, Hewitson TD. Fibroblast differentiation in wound
doi: 10.1016/j.mtsust.2019.100018 healing and fibrosis. Int Rev Cytol. 2007;257:143-179.
doi: 10.1016/S0074-7696(07)57004-X
38. Decante G, Costa JB, Silva-Correia J, Collins MN, Reis
RL, Oliveira JM. Engineering bioinks for 3D bioprinting. 51. Seo JW, Moon JH, Jang G, et al. Cell-laden gelatin
Biofabrication. 2021;13(3):032001. methacryloyl bioink for the fabrication of Z-stacked hydrogel
doi: 10.1088/1758-5090/abec2c scaffolds for tissue engineering. Polymers. 2020;12(12):3027.
doi: 10.3390/polym12123027
39. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek
RA, Opdenakker G. Biochemistry and molecular biology of 52. Leu Alexa R, Iovu H, Ghitman J, et al. 3D-printed gelatin
gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit methacryloyl-based scaffolds with potential application in
Rev Biochem Mol Biol. 2002;37(6):375-536. tissue engineering. Polymers. 2021;13(5):727.
doi: 10.1080/10409230290771546 doi: 10.3390/polym13050727
40. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, 53. Zu G, Meijer M, Mergel O, Zhang H, van Rijn P. 3D-printable
Khademhosseini A. Cell-laden microengineered gelatin hierarchical nanogel-GelMA composite hydrogel system.
methacrylate hydrogels. Biomaterials. 2010;31(21): Polymers. 2021;13(15):2508.
5536-5544. doi: 10.3390/polym13152508
doi: 10.1016/j.biomaterials.2010.03.064 54. Ma C, Choi J-B, Jang Y-S, et al. Mammalian and fish
41. Yoon HJ, Shin SR, Cha JM, et al. Cold water fish gelatin gelatin methacryloyl–alginate interpenetrating polymer
methacryloyl hydrogel for tissue engineering application. network hydrogels for tissue engineering. ACS Omega.
PLOS ONE. 2016;11(10):e0163902. 2021;6(27):17433-17441.
doi: 10.1371/journal.pone.0163902 doi: 10.1021/acsomega.1c01806
Volume 10 Issue 3 (2024) 424 doi: 10.36922/ijb.2219

