Page 433 - IJB-10-3
P. 433

International Journal of Bioprinting                         Expanding 3D cell proliferation with DLP bioprinting




            55.  Garbern JC, Hoffman AS, Stayton PS. Injectable pH- and   65.  Wen N, Qian E, Kang Y. Effects of macro-/micro-channels on
               temperature-responsive  poly(N-isopropylacrylamide-  vascularization and immune response of tissue engineering
               co-propylacrylic acid) copolymers for delivery of   scaffolds. Cells. 2021;10(6):1514.
               angiogenic growth factors. Biomacromolecules. 2010;11(7):      doi: 10.3390/cells10061514
               1833-1839.                                      66.  Xie Y, Hardouin P, Zhu Z,  Tang T, Dai K, Lu J. Three-
               doi: 10.1021/bm100318z                             dimensional flow perfusion culture system for stem cell

            56.  Yu K, Zhang X, Sun Y, et al. Printability during projection-  proliferation inside the critical-size β-tricalcium phosphate
               based 3D bioprinting. Bioact Mater. 2022;11:254-267.   scaffold. Tissue Eng. 2006;12(12):3535-3543.
               doi: 10.1016/j.bioactmat.2021.09.021               doi: 10.1089/ten.2006.12.3535
            57.  Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith   67.  Nii T, Makino K, Tabata Y. Influence of shaking culture on the
               LG. Effect of pore size and void fraction on cellular   biological functions of cell aggregates incorporating gelatin
               adhesion, proliferation, and matrix deposition. Tissue Eng.   hydrogel  microspheres.  J Biosci Bioeng.  2019;128(5):606-
               2001;7(5):557-572.                                 612.
               doi: 10.1089/107632701753213183                    doi: 10.1016/j.jbiosc.2019.04.013
            58.  Rather  JA,  Akhter  N,  Ashraf  QS,  et  al.  A  comprehensive   68.  Limraksasin P, Kosaka Y, Zhang M, et al. Shaking culture
               review on gelatin: Understanding impact of the sources,   enhances chondrogenic differentiation of mouse induced
               extraction methods, and modifications on potential   pluripotent stem cell constructs. Sci Rep. 2020;10(1):14996.
               packaging applications. Food Pkg Shelf Life. 2022;34:100945.     doi: 10.1038/s41598-020-72038-y
               https://www.sciencedirect.com/science/article/pii/  69.  Li C, Kuss M, Kong Y,  et al. 3D printed hydrogels with
               S2214289422001375                                  aligned microchannels to guide neural stem cell migration.
                                                                  ACS Biomater Sci Eng. 2021;7(2):690-700.
            59.  Andreazza R, Morales A, Pieniz S, Labidi J. Gelatin-based      doi: 10.1021/acsbiomaterials.0c01619
               hydrogels: potential biomaterials for remediation. Polymers.
               2023;15(4):1026.                                70.  Han J, Park S, Kim JE, et al. Development of a scaffold-on-
               doi: 10.3390/polym15041026                         a-chip platform to evaluate cell infiltration and osteogenesis
                                                                  on the 3D-printed scaffold for bone regeneration.  ACS
            60.  Jensen C, Teng Y. Is it time to start transitioning from 2D to   Biomater Sci Eng. 2023;9(2):968-977.
               3D cell culture? Front Mol Biosci. 2020;7:33.      doi: 10.1021/acsbiomaterials.2c01367
               doi: 10.3389/fmolb.2020.00033
                                                               71.  Dhwaj A, Roy N, Jaiswar A,  Prabhakar A, Verma D.
            61.  Wang Y, Huang X, Shen Y,  et al. Direct writing alginate   3D-printed impedance micropump for continuous perfusion
               bioink inside pre-polymers of hydrogels to create patterned   of the sample and nutrient medium integrated with a liver-
               vascular networks. J Mater Sci. 2019;54(10):7883-7892.   on-chip prototype. ACS Omega. 2022;7(45):40900-40910.
               doi: 10.1007/s10853-019-03447-2                    doi: 10.1021/acsomega.2c03818
            62.  Ying GL, Jiang N, Maharjan S,  et al. Aqueous two-phase   72.  Gao J, Li M, Cheng J,  et al. 3D-printed GelMA/PEGDA/
               emulsion bioink-enabled 3D bioprinting of porous   F127DA scaffolds for bone regeneration. J Funct Biomater.
               hydrogels. Adv Mater. 2018;30(50):e1805460.        2023;14(2):96.
               doi: 10.1002/adma.201805460                        doi: 10.3390/jfb14020096
            63.  Song YS, Lin RL, Montesano G, et al. Engineered 3D tissue   73.  Ma H, Xing F, Yu P, et al. Integrated design and fabrication
               models for cell-laden microfluidic channels.  Anal Bioanal   strategies based on bioprinting for skeletal muscle
               Chem. 2009;395(1):185-193.                         regeneration: current status and future perspectives. Mater
               doi: 10.1007/s00216-009-2935-1                     Des. 2023;225:111591.
            64.  Rnjak-Kovacina J, Wray LS, Golinski JM,  Kaplan DL.      doi: 10.1016/j.matdes.2023.111591
               Arrayed hollow channels in silk-based scaffolds provide   74.  Yu Q, Wang Q, Zhang L, et al. The applications of 3D printing
               functional outcomes for engineering critically sized tissue   in wound healing: the external delivery of stem cells and
               constructs. Adv Funct Mater. 2014;24(15):2188-2196.   antibiosis. Adv Drug Del Rev. 2023;197:114823.
               doi: 10.1002/adfm.201302901                        doi: 10.1016/j.addr.2023.114823













            Volume 10 Issue 3 (2024)                       425                                doi: 10.36922/ijb.2219
   428   429   430   431   432   433   434   435   436   437   438