Page 153 - IJB-10-6
P. 153
International Journal of Bioprinting Fluid mechanics of extrusion bioprinting
3. Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, doi: 10.1039/d0bm00973c
and future of additive manufacturing in engineering. 15. Zhang J, Allardyce BJ, Rajkhowa R, et al. 3D printing of silk
Computer-Aided Design. 2015;69:65-89. particle-reinforced chitosan hydrogel structures and their
doi: 10.1016/j.cad.2015.04.001
properties. ACS Biomater Sci Eng. 2018;4(8):3036-3046.
4. Ozbolat IT, Yin Yu. Bioprinting toward organ fabrication: doi: 10.1021/acsbiomaterials.8b00804
challenges and future trends. IEEE Trans Biomed Eng. 16. Aydogdu MO, Oner ET, Ekren N, et al. Comparative
2013;60(3):691-699. characterization of the hydrogel added PLA/β-TCP
doi: 10.1109/TBME.2013.2243912 scaffolds produced by 3D bioprinting. Bioprinting. 2019;
5. Farzin A, Miri AK, Sharifi F, et al. 3D-printed sugar-based 13:e00046.
stents facilitating vascular anastomosis. Adv Healthc Mater. doi: 10.1016/j.bprint.2019.e00046
2018;7(24):1800702. 17. Yan J, Wang Y, Zhang X, et al. Snakegourd root/Astragalus
doi: 10.1002/adhm.201800702 polysaccharide hydrogel preparation and application in 3D
6. Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of printing. Int J Biol Macromol. 2019;121:309-316.
scaffolds for tissue regeneration applications. Adv Healthc doi: 10.1016/j.ijbiomac.2018.10.008
Mater. 2015;4(12):1742-1762. 18. Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D
doi: 10.1002/adhm.201500168 bioprinted scaffolds for bone tissue engineering: state-of-
7. Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific the-art and emerging technologies. Front Bioeng Biotechnol.
bioinks for 3D bioprinting of tissue engineering scaffolds. 2022;10(April):824156.
Adv Healthc Mater. 2018;7(11):1701347. doi: 10.3389/fbioe.2022.824156
doi: 10.1002/adhm.201701347 19. Ratner BD, Bryant SJ. Biomaterials: where we have been and
8. Ozbolat IT, Hospodiuk M. Current advances and future where we are going. Annu Rev Biomed Eng. 2004;6:41-75.
perspectives in extrusion-based bioprinting. Biomaterials. doi: 10.1146/annurev.bioeng.6.040803.140027
2016;76:321-343. 20. Caló E, Khutoryanskiy VV. Biomedical applications of
doi: 10.1016/j.biomaterials.2015.10.076 hydrogels: a review of patents and commercial products.
9. Bakarich SE, Gorkin R, Gately R, Naficy S, in het Panhuis Eur Polym J. 2015;65:252-267.
M, Spinks GM. 3D printing of tough hydrogel composites doi: 10.1016/j.eurpolymj.2014.11.024
with spatially varying materials properties. Addit Manuf. 21. Roehm KD, Madihally SV. Bioprinted chitosan-gelatin
2017;14:24-30. thermosensitive hydrogels using an inexpensive 3D printer.
doi: 10.1016/j.addma.2016.12.003 Biofabrication. 2018;10(1):015002.
10. Kirchmajer DM, Gorkin R, In Het Panhuis M. An doi: 10.1088/1758-5090/aa96dd
overview of the suitability of hydrogel-forming polymers 22. Mora-Boza A, Włodarczyk-Biegun MK, Del Campo A,
for extrusion-based 3D-printing. J Mater Chem B. 2015;3: Vázquez-Lasa B, Román JS. Glycerylphytate as an ionic
4105-4117. crosslinker for 3D printing of multi-layered scaffolds with
doi: 10.1039/c5tb00393h improved shape fidelity and biological features. Biomater
11. Tavafoghi M, Darabi MA, Mahmoodi M, et al. Multimaterial Sci. 2019;8(1):506-516.
bioprinting and combination of processing techniques doi: 10.1039/c9bm01271k
towards the fabrication of biomimetic tissues and organs. 23. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials
Biofabrication. 2021;13(4):042002. / bioinks and extrusion bioprinting. Bioact Mater.
doi: 10.1088/1758-5090/ac0b9a 2023;28:511-536.
12. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. doi: 10.1016/j.bioactmat.2023.06.006
Printability and shape fidelity of bioinks in 3D bioprinting. 24. Akkineni AR, Ahlfeld T, Lode A, Gelinsky M. A versatile
Chem Rev. 2020;120(19):11028-11055. method for combining different biopolymers in a core/
doi: 10.1021/acs.chemrev.0c00084 shell fashion by 3D plotting to achieve mechanically robust
constructs. Biofabrication. 2016;8(4):045001.
13. Richard C, Neild A, Cadarso VJ. The emerging role of
microfluidics in multi-material 3D bioprinting. Lab Chip. doi: 10.1088/1758-5090/8/4/045001
2020;20(12):2044-2056. 25. Liu X, Zhao K, Gong T, et al. Delivery of growth factors using a
doi: 10.1039/c9lc01184f smart porous nanocomposite scaffold to repair a mandibular
14. Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian bone defect. Biomacromolecules. 2014;15(3):1019-1030.
A, Bodaghi M. Recent progress in extrusion 3D bioprinting doi: 10.1021/bm401911p
of hydrogel biomaterials for tissue regeneration: a 26. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as
comprehensive review with focus on advanced fabrication biomaterials. Macromol Biosci. 2006;6(8):623-633.
techniques. Biomater Sci. 2021;9(3):535-573. doi: 10.1002/mabi.200600069
Volume 10 Issue 6 (2024) 145 doi: 10.36922/ijb.3973

