Page 154 - IJB-10-6
P. 154
International Journal of Bioprinting Fluid mechanics of extrusion bioprinting
27. Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF. Analyzing 40. Xu X, Jagota A, Peng S, Luo D, Wu M, Hui CY. Gravity and
biological performance of 3D-printed, cell-impregnated surface tension effects on the shape change of soft materials.
hybrid constructs for cartilage tissue engineering. Tissue Eng Langmuir. 2013;29(27):8665-8674.
Part C Methods. 2016;22:173-188. doi: 10.1021/la400921h
doi: 10.1089/ten.tec.2015.0307
41. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a
28. Naghieh S, Sarker M, Izadifar M, Chen X. Dispensing-based comprehensive review on bioprintable materials. Biotechnol
bioprinting of mechanically-functional hybrid scaffolds with Adv. 2017;35(2):217-239.
vessel-like channels for tissue engineering applications – a doi: 10.1016/j.biotechadv.2016.12.006
brief review. J Mech Behav Biomed Mater. 2018;78:298-314.
doi: 10.1016/j.jmbbm.2017.11.037 42. Petta D, Grijpma DW, Alini M, Eglin D, D’Este M. Three-
dimensional printing of a tyramine hyaluronan derivative
29. Kiyotake EA, Douglas AW, Thomas EE, Nimmo SL, Detamore with double gelation mechanism for independent tuning of
MS. Development and quantitative characterization of shear thinning and postprinting curing. ACS Biomater Sci
the precursor rheology of hyaluronic acid hydrogels for Eng. 2018;4(8):3088-3098.
bioprinting. Acta Biomater. 2019;95:176-187. doi: 10.1021/acsbiomaterials.8b00416
doi: 10.1016/j.actbio.2019.01.041
43. Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin–
30. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov alginate composite bioink printability using rheological
A. Bioink properties before, during and after 3D bioprinting. parameters: a systematic approach. Biofabrication.
Biofabrication. 2016;8(3):032002. 2018;10(3):034106.
doi: 10.1088/1758-5090/8/3/032002 doi: 10.1088/1758-5090/aacdc7
31. Monika Hospodiuk KKMMDITO. Extrusion-Based 44. Saha D, Bhattacharya S. Hydrocolloids as thickening and
Biofabrication in Tissue Engineering and Regenerative gelling agents in food: a critical review. J Food Sci Technol.
Medicine. 1st ed. Springer; 2018. 2010;47(6):587-597.
32. Khalil S, Nam J, Sun W. Multi-nozzle deposition for doi: 10.1007/s13197-010-0162-6
construction of 3D biopolymer tissue scaffolds. Rapid 45. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on
Prototyp J. 2005;11(1):9-17. the printability of hydrogels in 3D bioprinting. Sci Rep.
doi: 10.1108/13552540510573347 2016;6(1):29977.
33. Boularaoui S, Al Hussein G, Khan KA, Christoforou N, doi: 10.1038/srep29977
Stefanini C. An overview of extrusion-based bioprinting 46. Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen
with a focus on induced shear stress and its effect on cell X. Printability and cell viability in bioprinting alginate
viability. Bioprinting. 2020;20(August):e00093. dialdehyde-gelatin scaffolds. ACS Biomater Sci Eng.
doi: 10.1016/j.bprint.2020.e00093 2019;5(6):2976-2987.
34. Ning L, Yang B, Mohabatpour F, et al. Process-induced doi: 10.1021/acsbiomaterials.9b00167
cell damage: pneumatic versus screw-driven bioprinting. 47. Lee JM, Ng WL, Yeong WY. Resolution and shape in
Biofabrication. 2020;12(2):025011. bioprinting: strategizing towards complex tissue and organ
doi: 10.1088/1758-5090/ab5f53 printing. Appl Phys Rev. 2019;6(1):011307.
35. Murphy SV, Atala A. 3D bioprinting of tissues and organs. doi: 10.1063/1.5053909
Nat Biotechnol. 2014;32(8):773-785. 48. Ribeiro A, Blokzijl MM, Levato R, et al. Assessing bioink
doi: 10.1038/nbt.2958 shape fidelity to aid material development in 3D bioprinting.
36. Daniel X. B. Chen. Extrusion Bioprinting of Scaffolds for Biofabrication. 2017;10(1):014102.
Tissue Engineering Applications. 1st ed. Springer Nature; doi: 10.1088/1758-5090/aa90e2
2019. 49. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties
37. Malekpour A, Chen X. Printability and cell viability in extrusion- on printability and cell viability for 3D bioplotting of
based bioprinting from experimental, computational, and embryonic stem cells. Biofabrication. 2016;8(3):035020.
machine learning views. J Funct Biomater. 2022;13(2):40. doi: 10.1088/1758-5090/8/3/035020
doi: 10.3390/jfb13020040
50. Herrada-Manchón H, Fernández MA, Aguilar E. Essential
38. Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability guide to hydrogel rheology in extrusion 3D printing: how to
in extrusion bioprinting. Biofabrication. 2021;13(3):033001. measure it and why it matters? Gels. 2023;9(7):517.
doi: 10.1088/1758-5090/abe7ab doi: 10.3390/gels9070517
39. Gillispie G, Prim P, Copus J, et al. Assessment methodologies 51. Cooke ME, Rosenzweig DH. The rheology of direct
for extrusion-based bioink printability. Biofabrication. and suspended extrusion bioprinting. APL Bioeng.
2020;12(2):22003. 2021;5(1):011502.
doi: 10.1088/1758-5090/ab6f0d doi: 10.1063/5.0031475
Volume 10 Issue 6 (2024) 146 doi: 10.36922/ijb.3973

