Page 154 - IJB-10-6
P. 154

International Journal of Bioprinting                                 Fluid mechanics of extrusion bioprinting




            27.  Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF. Analyzing   40.  Xu X, Jagota A, Peng S, Luo D, Wu M, Hui CY. Gravity and
               biological performance of 3D-printed, cell-impregnated   surface tension effects on the shape change of soft materials.
               hybrid constructs for cartilage tissue engineering. Tissue Eng   Langmuir. 2013;29(27):8665-8674.
               Part C Methods. 2016;22:173-188.                   doi: 10.1021/la400921h
               doi: 10.1089/ten.tec.2015.0307
                                                               41.  Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a
            28.  Naghieh S, Sarker M, Izadifar M, Chen X. Dispensing-based   comprehensive review on bioprintable materials. Biotechnol
               bioprinting of mechanically-functional hybrid scaffolds with   Adv. 2017;35(2):217-239.
               vessel-like channels for tissue engineering applications – a      doi: 10.1016/j.biotechadv.2016.12.006
               brief review. J Mech Behav Biomed Mater. 2018;78:298-314.
               doi: 10.1016/j.jmbbm.2017.11.037                42.  Petta D, Grijpma DW, Alini M, Eglin D, D’Este M. Three-
                                                                  dimensional printing of a tyramine hyaluronan derivative
            29.  Kiyotake EA, Douglas AW, Thomas EE, Nimmo SL, Detamore   with double gelation mechanism for independent tuning of
               MS. Development and quantitative characterization of   shear thinning and postprinting curing. ACS Biomater Sci
               the precursor rheology of  hyaluronic acid hydrogels for   Eng. 2018;4(8):3088-3098.
               bioprinting. Acta Biomater. 2019;95:176-187.       doi: 10.1021/acsbiomaterials.8b00416
               doi: 10.1016/j.actbio.2019.01.041
                                                               43.  Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin–
            30.  Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov   alginate composite bioink printability using rheological
               A. Bioink properties before, during and after 3D bioprinting.   parameters: a systematic approach.  Biofabrication.
               Biofabrication. 2016;8(3):032002.                  2018;10(3):034106.
               doi: 10.1088/1758-5090/8/3/032002                  doi: 10.1088/1758-5090/aacdc7
            31.  Monika  Hospodiuk  KKMMDITO.  Extrusion-Based   44.  Saha D,  Bhattacharya S. Hydrocolloids as  thickening  and
               Biofabrication in Tissue Engineering and Regenerative   gelling agents in food: a critical review. J Food Sci Technol.
               Medicine. 1st ed. Springer; 2018.                  2010;47(6):587-597.
            32.  Khalil S, Nam J, Sun W. Multi-nozzle deposition for      doi: 10.1007/s13197-010-0162-6
               construction  of  3D  biopolymer  tissue  scaffolds.  Rapid   45.  He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on
               Prototyp J. 2005;11(1):9-17.                       the  printability  of  hydrogels  in 3D  bioprinting.  Sci Rep.
               doi: 10.1108/13552540510573347                     2016;6(1):29977.
            33.  Boularaoui S, Al Hussein G, Khan KA, Christoforou N,      doi: 10.1038/srep29977
               Stefanini C. An overview of extrusion-based bioprinting   46.  Soltan  N,  Ning  L,  Mohabatpour  F,  Papagerakis  P,  Chen
               with a focus on induced shear stress and its effect on cell   X. Printability and cell viability in bioprinting alginate
               viability. Bioprinting. 2020;20(August):e00093.    dialdehyde-gelatin scaffolds.  ACS Biomater Sci Eng.
               doi: 10.1016/j.bprint.2020.e00093                  2019;5(6):2976-2987.
            34.  Ning  L,  Yang  B,  Mohabatpour  F,  et  al.  Process-induced      doi: 10.1021/acsbiomaterials.9b00167
               cell damage: pneumatic versus screw-driven bioprinting.   47.  Lee JM, Ng WL, Yeong WY. Resolution and shape in
               Biofabrication. 2020;12(2):025011.                 bioprinting: strategizing towards complex tissue and organ
               doi: 10.1088/1758-5090/ab5f53                      printing. Appl Phys Rev. 2019;6(1):011307.
            35.  Murphy SV, Atala A. 3D bioprinting of tissues and organs.      doi: 10.1063/1.5053909
               Nat Biotechnol. 2014;32(8):773-785.             48.  Ribeiro A, Blokzijl MM, Levato R, et al. Assessing bioink
               doi: 10.1038/nbt.2958                              shape fidelity to aid material development in 3D bioprinting.
            36.  Daniel X. B. Chen.  Extrusion Bioprinting of Scaffolds for   Biofabrication. 2017;10(1):014102.
               Tissue Engineering  Applications. 1st ed. Springer Nature;      doi: 10.1088/1758-5090/aa90e2
               2019.                                           49.  Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties
            37.  Malekpour A, Chen X. Printability and cell viability in extrusion-  on printability and cell viability for 3D bioplotting of
               based bioprinting from experimental, computational, and   embryonic stem cells. Biofabrication. 2016;8(3):035020.
               machine learning views. J Funct Biomater. 2022;13(2):40.     doi: 10.1088/1758-5090/8/3/035020
               doi: 10.3390/jfb13020040
                                                               50.  Herrada-Manchón H, Fernández MA, Aguilar E. Essential
            38.  Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability   guide to hydrogel rheology in extrusion 3D printing: how to
               in extrusion bioprinting. Biofabrication. 2021;13(3):033001.  measure it and why it matters? Gels. 2023;9(7):517.
               doi: 10.1088/1758-5090/abe7ab                      doi: 10.3390/gels9070517
            39.  Gillispie G, Prim P, Copus J, et al. Assessment methodologies   51.  Cooke ME, Rosenzweig DH. The rheology of direct
               for extrusion-based bioink printability.  Biofabrication.   and suspended extrusion bioprinting.  APL Bioeng.
               2020;12(2):22003.                                  2021;5(1):011502.
               doi: 10.1088/1758-5090/ab6f0d                      doi: 10.1063/5.0031475


            Volume 10 Issue 6 (2024)                       146                                doi: 10.36922/ijb.3973
   149   150   151   152   153   154   155   156   157   158   159