Page 159 - IJB-10-6
P. 159

International Journal of Bioprinting                                 Fluid mechanics of extrusion bioprinting




               doi: 10.1039/c7lc01236e                         162. Chávez-Madero C, De León-Derby MD, Samandari M,
                                                                  et al. Using chaotic advection for facile high-throughput
            150. Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden
               microfibres exhibit tissue morphologies and functions. Nat   fabrication of ordered multilayer micro-and nanostructures:
               Mater. 2013;12(6):584-590.                         continuous chaotic printing.  Biofabrication. 2020;12(3):
               doi: 10.1038/nmat3606                              035023.
                                                                  doi: 10.1088/1758-5090/ab84cc
            151. Raja N, Yun H suk. A simultaneous 3D printing process
               for  the  fabrication  of  bioceramic  and  cell-laden  hydrogel   163. Ober TJ, Foresti D, Lewis JA. Active mixing of complex
               core/shell scaffolds with potential application in bone tissue   fluids at the microscale.  Proc Natl Acad Sci USA.
               regeneration. J Mater Chem B. 2016;4(27):4707-4716.  2015;112(40):12293-12298.
               doi: 10.1039/C6TB00849F                            doi: 10.1073/pnas.1509224112
            152. Angelozzi M, Miotto M, Penolazzi L, et al. Composite   164. Kuzucu M, Vera G, Beaumont M, et al. Extrusion-based
               ECM-alginate microfibers produced by microfluidics as   3D bioprinting of gradients of stiffness, cell density, and
               scaffolds with biomineralization potential. Mater Sci Eng C.   immobilized peptide using thermogelling hydrogels.  ACS
               2015;56:141-153.                                   Biomater Sci Eng. 2021;7(6):2192-2197.
               doi: 10.1016/j.msec.2015.06.004                    doi: 10.1021/acsbiomaterials.1c00183
            153. Lee C, Abelseth E, de la Vega L, Willerth SM. Bioprinting   165. Giachini PAGS, Gupta SS, Wang W, et al. Additive
               a novel glioblastoma tumor model using a fibrin-based   manufacturing of cellulose-based materials with continuous,
               bioink for drug screening.  Mater Today Chem. 2019;   multidirectional stiffness gradients. Sci Adv. 2020;6(8):1-12.
               12:78-84.                                          doi: 10.1126/sciadv.aay0929
               doi: 10.1016/j.mtchem.2018.12.005               166. Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos
            154. Pati F, Jang J, Lee JW, and D.-W. Cho C. Extrusion   AG, Fisher JP. 3D printing for the design and fabrication
               Bioprinting. In: Atala A, Yoo JJ, eds. Extrusion Bioprinting,   of polymer-based gradient scaffolds.  Acta Biomater.
               in  Essentials  of  3D  Biofabrication  and  Translation. 1st ed.   2017;56:3-13.
               Academic Press; 2015.                              doi: 10.1016/j.actbio.2017.03.030
            155. Hardin JO, Ober TJ, Valentine AD, Lewis JA. Microfluidic   167. Nadernezhad A, Khani N, Skvortsov GA, et al.
               printheads for multimaterial 3d printing of viscoelastic inks.   Multifunctional 3D printing of heterogeneous hydrogel
               Adv Mater. 2015;27(21):3279-3284.                  structures. Sci Rep. 2016;6(September):1-12.
               doi: 10.1002/adma.201500222                        doi: 10.1038/srep33178
            156. du Chatinier DN, Figler KP, Agrawal P, Liu W, Zhang YS. The   168. Samandari  M,  Alipanah  F,  Majidzadeh-A  K,  Alvarez
               potential of microfluidics-enhanced extrusion bioprinting.   MM, Trujillo-De Santiago G, Tamayol A. Controlling
               Biomicrofluidics. 2021;15(4):041304.               cellular  organization  in  bioprinting  through  designed 3D
               doi: 10.1063/5.0033280                             microcompartmentalization.  Appl Phys Rev. 2021;8(2):
            157. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA.   021404.
               Dripping to jetting transitions in coflowing liquid streams.      doi: 10.1063/5.0040732
               Phys Rev Lett. 2007;99(9):094502.               169. Ceballos‐González CF, Bolívar‐Monsalve EJ, Quevedo‐
               doi: 10.1103/PhysRevLett.99.094502                 Moreno DA, et al. Plug‐and‐play multimaterial chaotic
            158. Derzsi L, Kasprzyk M, Plog JP, Garstecki P. Flow focusing   printing/bioprinting to produce radial and axial
               with viscoelastic liquids. Phys Fluids. 2013;25(9):092001.  micropatterns  in  hydrogel  filaments.  Adv Mater Technol.
               doi: 10.1063/1.4817995                             2023;8(17):2202208.
                                                                  doi: 10.1002/admt.202202208
            159. Ober TJ, Foresti D, Lewis JA. Active mixing of complex
               fluids at the microscale.  Proc Natl Acad Sci USA.   170. Snyder J, Son AR, Hamid Q, Wu H, Sun W. Hetero-cellular
               2015;112(40):12293-12298.                          prototyping by synchronized multi-material bioprinting for
               doi: 10.1073/pnas.1509224112                       rotary cell culture system. Biofabrication. 2016;8(1):015002.
                                                                  doi:  10.1088/1758-5090/8/1/015002
            160. Hessel V, Löwe H, Schönfeld F. Micromixers—a review
               on passive and active mixing principles.  Chem Eng Sci.   171. Colosi C, Shin SR, Manoharan V, et al. Microfluidic
               2005;60(8-9):2479-2501.                            bioprinting of heterogeneous 3D tissue constructs using
               doi: 10.1016/j.ces.2004.11.033                     low-viscosity bioink. Adv Mater. 2016;28(4):677-684.
                                                                  doi: 10.1002/adma.201503310
            161. Grace HP. Dispersion phenomena in high viscosity
               immiscible  fluid  systems  and  application  of  static  mixers   172. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA,
               as dispersion devices in such systems. Chem Eng Commun.   Whitesides GM. Chaotic mixer for microchannels. Science
               1982;14(3-6):225-277.                              (1979). 2002;295(5555):647-651.
               doi: 10.1080/00986448208911047                     doi: 10.1126/science.1066238


            Volume 10 Issue 6 (2024)                       151                                doi: 10.36922/ijb.3973
   154   155   156   157   158   159   160   161   162   163   164