Page 160 - IJB-10-6
P. 160
International Journal of Bioprinting Fluid mechanics of extrusion bioprinting
173. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting cartilage bioprinting applications. Ann Biomed Eng.
of hydrogel constructs with cell and material gradients for 2017;45(1):210-223.
the regeneration of full-thickness chondral defect using a doi: 10.1007/s10439-016-1704-5
microfluidic printing head. Biofabrication. 2019;11(4):044101.
doi: 10.1088/1758-5090/ab2622 186. Ates G, Bartolo P. Computational fluid dynamics for the
optimization of internal bioprinting parameters and mixing
174. Li M, Tian X, Zhu N, Schreyer DJ, Chen X. Modeling conditions. Int J Bioprint. 2023;9(6):0219.
process-induced cell damage in the biodispensing process. doi: 10.36922/ijb.0219
Tissue Eng Part C Methods. 2010;16(3):533-542. 187. Chand R, Muhire BS, Vijayavenkataraman S. Computational
doi: 10.1089/ten.TEC.2009.0178
fluid dynamics assessment of the effect of bioprinting
175. Metzner YC and AB. An analysis of apparent slip flow of parameters in extrusion bioprinting. Int J Bioprint.
polymer solutions. Rheol Acta. 1986;25:28-35. 2022;8(2):45-60.
176. Reid JA, Mollica PA, Johnson GD, Ogle RC, Bruno RD, doi: 10.18063/ijb.v8i2.545
Sachs PC. Accessible bioprinting: Adaptation of a low- 188. Magalhães IP, de Oliveira PM, Dernowsek J, Casas EB Las,
cost 3D-printer for precise cell placement and stem cell Casas MS Las. Investigation of the effect of nozzle design on
differentiation. Biofabrication. 2016;8(2):025017. rheological bioprinting properties using computational fluid
doi: 10.1088/1758-5090/8/2/025017 dynamics. Revista Materia. 2019;24(3):12401.
177. Li M, Tian X, Kozinski JA, Chen X, Hwang DK. Modeling doi: 10.1590/s1517-707620190003.0714
mechanical cell damage in the bioprinting process employing 189. Li Y, Liu Y, Jiang C, Li S, Liang G, Hu Q. A reactor-like
a conical needle. J Mech Med Biol. 2015;15(05):1550073. spinneret used in 3D printing alginate hollow fiber: a
doi: 10.1142/S0219519415500736 numerical study of morphological evolution. Soft Matter.
178. Martanto W, Baisch SM, Costner EA, Prausnitz MR, Smith 2016;12(8):2392-2399.
MK. Fluid dynamics in conically tapered microneedles. doi: 10.1039/c5sm02733k
AIChE J. 2005;51(6):1599-1607. 190. Li S, Liu Y, Li Y, Zhang Y, Hu Q. Computational and
doi: 10.1002/aic.10424 experimental investigations of the mechanisms used by
179. Leppiniemi J, Lahtinen P, Paajanen A, et al. 3D-printable coaxial fluids to fabricate hollow hydrogel fibers. Chem Eng
bioactivated nanocellulose-alginate hydrogels. ACS Appl Process. Process Intensif. 2015;95:98-104.
Mater Interfaces. 2017;9(26):21959-21970. doi: 10.1016/j.cep.2015.05.018
doi: 10.1021/acsami.7b02756 191. Nyande BW, Thomas MK, Lakerveld R. CFD analysis of a
180. Liravi F, Darleux R, Toyserkani E. Additive manufacturing kenics static mixer with a low pressure drop under laminar
of 3D structures with non-Newtonian highly viscous fluids: flow conditions. Ind Eng Chem Res. 2021;60(14):5264-5277.
finite element modeling and experimental validation. Addit doi: 10.1021/acs.iecr.1c00135
Manuf. 2017;13:113-123. 192. Ates G, Bartolo P. Numerical simulation of multimaterial
doi: 10.1016/j.addma.2016.10.008 polymer mixing for bioprinting applications. J Addit Manuf
181. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel Technol. 2021;1:12–14.
P. The 3D printing of gelatin methacrylamide cell-laden doi: 10.18416/JAMTECH.2111606
tissue-engineered constructs with high cell viability. 193. Blaeser A, Duarte Campos DF, Puster U, Richtering W,
Biomaterials. 2014;35(1):49-62. Stevens MM, Fischer H. Controlling shear stress in 3D
doi: 10.1016/j.biomaterials.2013.09.078 bioprinting is a key factor to balance printing resolution
182. Lee KY, Kong HJ, Larson RG, Mooney DJ. Hydrogel formation and stem cell integrity. Adv Healthc Mater. 2016;5(3):
via cell crosslinking. Adv Mater. 2003;15(21):1828-1832. 326-333.
doi: 10.1002/adma.200305406 doi: 10.1002/adhm.201500677
183. Park H, Kang SW, Kim BS, Mooney DJ, Lee KY. Shear- 194. Mammoli AA, Brebbia CA, eds. Computational Methods in
reversibly crosslinked alginate hydrogels for tissue Multiphase Flow. Vol III. WIT; 2005.
engineering. Macromol Biosci. 2009;9(9):895-901. 195. Ramezani H, Mohammad Mirjamali S, He Y. Simulations
doi: 10.1002/mabi.200800376
of extrusion 3D printing of chitosan hydrogels. Appl Sci.
184. Das S, Chowdhury AR, Datta P. Modelling cell deformations 2022;12(15):7530.
in bioprinting process using a multicompartment-smooth doi: 10.3390/app12157530
particle hydrodynamics approach. Proc Inst Mech Eng H. 196. Emmermacher J, Spura D, Cziommer J, et al. Engineering
2022;236(6):867-881. considerations on extrusion-based bioprinting: interactions
doi: 10.1177/09544119221089720
of material behavior, mechanical forces and cells in the
185. Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi- printing needle. Biofabrication. 2020;12(2):025022.
Wong M. Alginate sulfate–nanocellulose bioinks for doi: 10.1088/1758-5090/ab7553
Volume 10 Issue 6 (2024) 152 doi: 10.36922/ijb.3973

