Page 160 - IJB-10-6
P. 160

International Journal of Bioprinting                                 Fluid mechanics of extrusion bioprinting




            173. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting   cartilage bioprinting applications.  Ann Biomed  Eng.
               of hydrogel constructs with cell and material gradients for   2017;45(1):210-223.
               the regeneration of full-thickness chondral defect using a      doi: 10.1007/s10439-016-1704-5
               microfluidic printing head. Biofabrication. 2019;11(4):044101.
               doi: 10.1088/1758-5090/ab2622                   186. Ates G, Bartolo P. Computational fluid dynamics for the
                                                                  optimization of internal bioprinting parameters and mixing
            174. Li M, Tian X, Zhu N, Schreyer DJ, Chen X. Modeling   conditions. Int J Bioprint. 2023;9(6):0219.
               process-induced cell damage in the biodispensing process.      doi: 10.36922/ijb.0219
               Tissue Eng Part C Methods. 2010;16(3):533-542.  187. Chand R, Muhire BS, Vijayavenkataraman S. Computational
               doi:  10.1089/ten.TEC.2009.0178
                                                                  fluid dynamics assessment of the effect of bioprinting
            175. Metzner YC and AB. An analysis of apparent slip flow of   parameters in extrusion bioprinting.  Int J Bioprint.
               polymer solutions. Rheol Acta. 1986;25:28-35.      2022;8(2):45-60.
            176. Reid JA, Mollica PA, Johnson GD, Ogle RC, Bruno RD,      doi: 10.18063/ijb.v8i2.545
               Sachs PC. Accessible bioprinting: Adaptation of a low-  188. Magalhães IP, de Oliveira PM, Dernowsek J, Casas EB Las,
               cost 3D-printer for precise cell placement and stem cell   Casas MS Las. Investigation of the effect of nozzle design on
               differentiation. Biofabrication. 2016;8(2):025017.  rheological bioprinting properties using computational fluid
               doi:  10.1088/1758-5090/8/2/025017                 dynamics. Revista Materia. 2019;24(3):12401.
            177. Li M, Tian X, Kozinski JA, Chen X, Hwang DK. Modeling      doi: 10.1590/s1517-707620190003.0714
               mechanical cell damage in the bioprinting process employing   189. Li  Y,  Liu  Y,  Jiang  C,  Li  S,  Liang  G,  Hu  Q.  A  reactor-like
               a conical needle. J Mech Med Biol. 2015;15(05):1550073.  spinneret used in 3D printing alginate hollow fiber: a
               doi: 10.1142/S0219519415500736                     numerical study of morphological evolution.  Soft Matter.
            178. Martanto W, Baisch SM, Costner EA, Prausnitz MR, Smith   2016;12(8):2392-2399.
               MK. Fluid dynamics in conically tapered microneedles.      doi: 10.1039/c5sm02733k
               AIChE J. 2005;51(6):1599-1607.                  190. Li  S,  Liu  Y,  Li  Y,  Zhang  Y,  Hu  Q.  Computational  and
               doi: 10.1002/aic.10424                             experimental investigations of the mechanisms used by
            179. Leppiniemi J, Lahtinen P, Paajanen A, et al. 3D-printable   coaxial fluids to fabricate hollow hydrogel fibers. Chem Eng
               bioactivated  nanocellulose-alginate  hydrogels.  ACS Appl   Process. Process Intensif. 2015;95:98-104.
               Mater Interfaces. 2017;9(26):21959-21970.          doi: 10.1016/j.cep.2015.05.018
               doi:  10.1021/acsami.7b02756                    191. Nyande BW, Thomas MK, Lakerveld R. CFD analysis of a
            180. Liravi F, Darleux R, Toyserkani E. Additive manufacturing   kenics static mixer with a low pressure drop under laminar
               of 3D structures with non-Newtonian highly viscous fluids:   flow conditions. Ind Eng Chem Res. 2021;60(14):5264-5277.
               finite element modeling and experimental validation. Addit      doi: 10.1021/acs.iecr.1c00135
               Manuf. 2017;13:113-123.                         192. Ates G, Bartolo P. Numerical simulation of multimaterial
               doi: 10.1016/j.addma.2016.10.008                   polymer mixing for bioprinting applications. J Addit Manuf
            181. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel   Technol. 2021;1:12–14.
               P. The 3D printing of gelatin methacrylamide cell-laden      doi: 10.18416/JAMTECH.2111606
               tissue-engineered constructs with high cell viability.   193. Blaeser  A, Duarte  Campos  DF,  Puster  U,  Richtering W,
               Biomaterials. 2014;35(1):49-62.                    Stevens MM, Fischer H. Controlling shear stress in 3D
               doi: 10.1016/j.biomaterials.2013.09.078            bioprinting is a key factor to balance printing resolution
            182. Lee KY, Kong HJ, Larson RG, Mooney DJ. Hydrogel formation   and stem cell integrity.  Adv Healthc Mater. 2016;5(3):
               via cell crosslinking. Adv Mater. 2003;15(21):1828-1832.  326-333.
               doi: 10.1002/adma.200305406                        doi: 10.1002/adhm.201500677
            183. Park H, Kang SW, Kim BS, Mooney DJ, Lee KY. Shear-  194. Mammoli AA, Brebbia CA, eds. Computational Methods in
               reversibly crosslinked alginate hydrogels for tissue   Multiphase Flow. Vol III. WIT; 2005.
               engineering. Macromol Biosci. 2009;9(9):895-901.  195. Ramezani H, Mohammad Mirjamali S, He Y. Simulations
               doi: 10.1002/mabi.200800376
                                                                  of extrusion 3D printing of chitosan hydrogels.  Appl Sci.
            184. Das S, Chowdhury AR, Datta P. Modelling cell deformations   2022;12(15):7530.
               in bioprinting process using a multicompartment-smooth      doi: 10.3390/app12157530
               particle hydrodynamics approach.  Proc Inst Mech Eng H.   196. Emmermacher J, Spura D, Cziommer J, et al. Engineering
               2022;236(6):867-881.                               considerations on extrusion-based bioprinting: interactions
               doi: 10.1177/09544119221089720
                                                                  of material behavior, mechanical forces and cells in the
            185. Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-  printing needle. Biofabrication. 2020;12(2):025022.
               Wong M. Alginate sulfate–nanocellulose bioinks for      doi: 10.1088/1758-5090/ab7553

            Volume 10 Issue 6 (2024)                       152                                doi: 10.36922/ijb.3973
   155   156   157   158   159   160   161   162   163   164   165