Page 157 - IJB-10-6
P. 157

International Journal of Bioprinting                                 Fluid mechanics of extrusion bioprinting




            103. Maklad O, Poole RJ. A review of the second normal-stress   115. Ma J, Lin Y, Chen X, Zhao B, Zhang J. Flow behavior,
               difference; its importance in various flows, measurement   thixotropy and dynamical viscoelasticity of sodium alginate
               techniques, results for various complex fluids and theoretical   aqueous solutions. Food Hydrocoll. 2014;38:119-128.
               predictions. J Nonnewton Fluid Mech. 2021;292:104522.     doi: 10.1016/j.foodhyd.2013.11.016
               doi: 10.1016/j.jnnfm.2021.104522
                                                               116. Talluri DJS, Nguyen HT, Avazmohammadi R, Miri AK. Ink
            104. R J Poole. The Deborah and Weissenberg numbers. Rheol   rheology regulates stability of bioprinted strands. J Biomech
               Bull. 2012;52(2):32-39.                            Eng. 2022;144(7) 074503.
                                                                  doi: 10.1115/1.4053404
            105. Wu Q, Therriault D, Heuzey MC. Processing and properties
               of chitosan inks for 3D printing of hydrogel microstructures.   117. Gregory T, Benhal P, Scutte A, et al. Rheological
               ACS Biomater Sci Eng. 2018;4(7):2643-2652.         characterization of cell-laden alginate-gelatin hydrogels
               doi: 10.1021/acsbiomaterials.8b00415               for 3D biofabrication.  J  Mech  Behav  Biomed  Mater.
                                                                  2022;136:105474.
            106. Vlachopoulos J, Polychronopoulos N. Basic concepts in
               polymer melt rheology and their importance in processing.      doi: 10.1016/j.jmbbm.2022.105474
               In: Kontopoulou M, eds.  Applied Polymer Rheology. John   118. López-Marcial GR, Zeng AY, Osuna C, Dennis J, García
               Wiley & Sons, Inc.; 2011:1-27.                     JM, O’Connell GD. Agarose-based hydrogels as suitable
               doi: 10.1002/9781118140611.ch1                     bioprinting materials for tissue engineering. ACS Biomater
                                                                  Sci Eng. 2018;4(10):3610-3616.
            107. Koopmans RJ. Die swell or extrudate swell. In: Karger-Kocsis
               J, ed. Polypropylene: An A-Z Reference. Kluwer Publishers;      doi: 10.1021/acsbiomaterials.8b00903
               1999.                                           119. Benchabane A, Bekkour K. Rheological properties of
                                                                  carboxymethyl cellulose (CMC) solutions.  Colloid Polym
            108. Sodupe-Ortega E, Sanz-Garcia A, Pernia-Espinoza A,
               Escobedo-Lucea C. Accurate calibration in multi-material   Sci. 2008;286(10):1173-1180.
               3D bioprinting for tissue engineering.  Materials (Basel).      doi: 10.1007/s00396-008-1882-2
               2018;11(8):1402.                                120. Ramezani H, Mohammad Mirjamali S, He Y. Simulations
               doi:  10.3390/ma11081402                           of  extrusion 3d  printing  of  chitosan  hydrogels.  Appl Sci.
                                                                  2022;12(15):7530.
            109. Anna SL, Rogers C, McKinley GH. On controlling the
               kinematics of a filament stretching rheometer using a real-     doi: 10.3390/app12157530
               time active control mechanism.  J Nonnewton Fluid Mech.   121. Rahimnejad M, Labonté-Dupuis T, Demarquette NR,
               1999;87(2-3):307-335.                              Lerouge S. A rheological approach to assess the printability
               doi: 10.1016/S0377-0257(99)00072-5                 of thermosensitive chitosan-based biomaterial inks. Biomed
                                                                  Mater. 2021;16(1):015003.
            110. Ooi  YW,  Sridhar  T.  Extensional  rheometry  of  fluid  S1.
               J Nonnewton Fluid Mech. 1994;52(2):153-162.        doi: 10.1088/1748-605X/abb2d8
               doi: 10.1016/0377-0257(94)80047-2               122. Lan X, Adesida A, Boluk Y. Rheological and viscoelastic
                                                                  properties  of  collagens  and  their  role  in  bioprinting  by
            111. McKinley GH, Tripathi A, Yao M. Extensional rheometry of
               polymeric fluids and the uniaxial elongation of viscoelastic   micro-extrusion. Biomed Mater. 2022;17(6):062005.
               filaments. In: Kruijt PGM, Meijer HEH, van de Vosse FN,      doi: 10.1088/1748-605X/ac9b06
               eds.  15th Annual Meeting of the International Polymer   123. Andrade RD, Skurtys O, Osorio F, Zuluaga R, Gañán P,
               Processing Society; 1999.                          Castro C. Rheological and physical properties of gelatin
                                                                  suspensions containing cellulose nanofibers for potential
            112. Göhl J, Markstedt K, Mark A, Håkansson K, Gatenholm
               P, Edelvik F. Simulations of 3D bioprinting: Predicting   coatings. Food Sci Technol Int. 2015;21(5):332-341.
               bioprintability of nanofibrillar inks.  Biofabrication.      doi: 10.1177/1082013214535944
               2018;10(3):34105.                               124. Kokol V, Pottathara YB, Mihelčič M, Perše LS. Rheological
               doi: 10.1088/1758-5090/aac872                      properties of gelatine hydrogels affected by flow- and
                                                                  horizontally-induced cooling rates during 3D cryo-printing.
            113. Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical
               analysis  on the effects  of microfluidic-based  bioprinting   Colloids Surf A Physicochem Eng Asp. 2021;616:126356.
               parameters on the microfiber geometrical outcomes.  Sci      doi: 10.1016/j.colsurfa.2021.126356
               Rep. 2022;12(1):3364.                           125. Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A.
               doi: 10.1038/s41598-022-07392-0                    The PAM 2 system: a multilevel approach for fabrication of
                                                                  complex three-dimensional microstructures. Rapid Prototyp
            114. Hemasian Etefagh A, Razfar MR. Numerical study of the
               process parameters affecting the feature size of a microfiber   J. 2012;18(4):299-307.
               fabricated by microfluidic-based bioprinting.  Proc Instit      doi: 10.1108/13552541211231725
               Mech Eng E: J Process Mech Eng. 2024.           126. Naghieh S, Karamooz-Ravari MR, Sarker M, Karki E, Chen
               doi: 10.1177/09544089241236265                     X. Influence of crosslinking on the mechanical behavior of

            Volume 10 Issue 6 (2024)                       149                                doi: 10.36922/ijb.3973
   152   153   154   155   156   157   158   159   160   161   162