Page 157 - IJB-10-6
P. 157
International Journal of Bioprinting Fluid mechanics of extrusion bioprinting
103. Maklad O, Poole RJ. A review of the second normal-stress 115. Ma J, Lin Y, Chen X, Zhao B, Zhang J. Flow behavior,
difference; its importance in various flows, measurement thixotropy and dynamical viscoelasticity of sodium alginate
techniques, results for various complex fluids and theoretical aqueous solutions. Food Hydrocoll. 2014;38:119-128.
predictions. J Nonnewton Fluid Mech. 2021;292:104522. doi: 10.1016/j.foodhyd.2013.11.016
doi: 10.1016/j.jnnfm.2021.104522
116. Talluri DJS, Nguyen HT, Avazmohammadi R, Miri AK. Ink
104. R J Poole. The Deborah and Weissenberg numbers. Rheol rheology regulates stability of bioprinted strands. J Biomech
Bull. 2012;52(2):32-39. Eng. 2022;144(7) 074503.
doi: 10.1115/1.4053404
105. Wu Q, Therriault D, Heuzey MC. Processing and properties
of chitosan inks for 3D printing of hydrogel microstructures. 117. Gregory T, Benhal P, Scutte A, et al. Rheological
ACS Biomater Sci Eng. 2018;4(7):2643-2652. characterization of cell-laden alginate-gelatin hydrogels
doi: 10.1021/acsbiomaterials.8b00415 for 3D biofabrication. J Mech Behav Biomed Mater.
2022;136:105474.
106. Vlachopoulos J, Polychronopoulos N. Basic concepts in
polymer melt rheology and their importance in processing. doi: 10.1016/j.jmbbm.2022.105474
In: Kontopoulou M, eds. Applied Polymer Rheology. John 118. López-Marcial GR, Zeng AY, Osuna C, Dennis J, García
Wiley & Sons, Inc.; 2011:1-27. JM, O’Connell GD. Agarose-based hydrogels as suitable
doi: 10.1002/9781118140611.ch1 bioprinting materials for tissue engineering. ACS Biomater
Sci Eng. 2018;4(10):3610-3616.
107. Koopmans RJ. Die swell or extrudate swell. In: Karger-Kocsis
J, ed. Polypropylene: An A-Z Reference. Kluwer Publishers; doi: 10.1021/acsbiomaterials.8b00903
1999. 119. Benchabane A, Bekkour K. Rheological properties of
carboxymethyl cellulose (CMC) solutions. Colloid Polym
108. Sodupe-Ortega E, Sanz-Garcia A, Pernia-Espinoza A,
Escobedo-Lucea C. Accurate calibration in multi-material Sci. 2008;286(10):1173-1180.
3D bioprinting for tissue engineering. Materials (Basel). doi: 10.1007/s00396-008-1882-2
2018;11(8):1402. 120. Ramezani H, Mohammad Mirjamali S, He Y. Simulations
doi: 10.3390/ma11081402 of extrusion 3d printing of chitosan hydrogels. Appl Sci.
2022;12(15):7530.
109. Anna SL, Rogers C, McKinley GH. On controlling the
kinematics of a filament stretching rheometer using a real- doi: 10.3390/app12157530
time active control mechanism. J Nonnewton Fluid Mech. 121. Rahimnejad M, Labonté-Dupuis T, Demarquette NR,
1999;87(2-3):307-335. Lerouge S. A rheological approach to assess the printability
doi: 10.1016/S0377-0257(99)00072-5 of thermosensitive chitosan-based biomaterial inks. Biomed
Mater. 2021;16(1):015003.
110. Ooi YW, Sridhar T. Extensional rheometry of fluid S1.
J Nonnewton Fluid Mech. 1994;52(2):153-162. doi: 10.1088/1748-605X/abb2d8
doi: 10.1016/0377-0257(94)80047-2 122. Lan X, Adesida A, Boluk Y. Rheological and viscoelastic
properties of collagens and their role in bioprinting by
111. McKinley GH, Tripathi A, Yao M. Extensional rheometry of
polymeric fluids and the uniaxial elongation of viscoelastic micro-extrusion. Biomed Mater. 2022;17(6):062005.
filaments. In: Kruijt PGM, Meijer HEH, van de Vosse FN, doi: 10.1088/1748-605X/ac9b06
eds. 15th Annual Meeting of the International Polymer 123. Andrade RD, Skurtys O, Osorio F, Zuluaga R, Gañán P,
Processing Society; 1999. Castro C. Rheological and physical properties of gelatin
suspensions containing cellulose nanofibers for potential
112. Göhl J, Markstedt K, Mark A, Håkansson K, Gatenholm
P, Edelvik F. Simulations of 3D bioprinting: Predicting coatings. Food Sci Technol Int. 2015;21(5):332-341.
bioprintability of nanofibrillar inks. Biofabrication. doi: 10.1177/1082013214535944
2018;10(3):34105. 124. Kokol V, Pottathara YB, Mihelčič M, Perše LS. Rheological
doi: 10.1088/1758-5090/aac872 properties of gelatine hydrogels affected by flow- and
horizontally-induced cooling rates during 3D cryo-printing.
113. Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical
analysis on the effects of microfluidic-based bioprinting Colloids Surf A Physicochem Eng Asp. 2021;616:126356.
parameters on the microfiber geometrical outcomes. Sci doi: 10.1016/j.colsurfa.2021.126356
Rep. 2022;12(1):3364. 125. Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A.
doi: 10.1038/s41598-022-07392-0 The PAM 2 system: a multilevel approach for fabrication of
complex three-dimensional microstructures. Rapid Prototyp
114. Hemasian Etefagh A, Razfar MR. Numerical study of the
process parameters affecting the feature size of a microfiber J. 2012;18(4):299-307.
fabricated by microfluidic-based bioprinting. Proc Instit doi: 10.1108/13552541211231725
Mech Eng E: J Process Mech Eng. 2024. 126. Naghieh S, Karamooz-Ravari MR, Sarker M, Karki E, Chen
doi: 10.1177/09544089241236265 X. Influence of crosslinking on the mechanical behavior of
Volume 10 Issue 6 (2024) 149 doi: 10.36922/ijb.3973

